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TRIVIAL, STRONGLY MINIMAL THEORIES 
ARE MODEL COMPLETE AFTER NAMING CONSTANTS 

SERGEY S. GONCHAROV, VALENTINA S. HARIZANOV, MICHAEL C. LASKOWSKI, 
STEFFEN LEMPP, AND CHARLES F. D. MCCOY 

(Communicated by Carl G. Jockusch, Jr.) 

ABSTRACT. We prove that if M is any model of a trivial, strongly minimal 
theory, then the elementary diagram Th(MM) is a model complete LM-theory. 
We conclude that all countable models of a trivial, strongly minimal theory 
with at least one computable model are 0"-decidable, and that the spectrum 
of computable models of any trivial, strongly minimal theory is EO 

The purely model-theoretic result in the title was not arrived at in a straightfor- 
ward way. Rather, it arose from a question in computable model theory raised by 
the fourth author of this paper. In discussions with various colleagues over several 
years, he had been unable to "code complicated sets into" countable models of un- 
countably categorical theories. In the end, as our result shows, it turned out that 
there was a purely model-theoretic reason for his failure. 

Since this paper is intended for two distinct audiences, we organize the remain- 
der of it as follows. Section 1 recalls some model-theoretic definitions, states and 
proves the Main Theorem, and derives some model-theoretic consequences that are 
used in the next section. Then Section 2 presents the motivation from, and some 
consequences in, computable model theory. 

For basic definitions and results, we refer the reader to Chang/Keisler [3], Buech- 
ler [2], and Pillay [17] in model theory, and Ershov/Goncharov [4] and Harizanov 
[8] in computable model theory. 

1. THE MAIN THEOREM AND ITS PROOF 

Throughout the paper, we assume a countable first-order language ?. We recall 
some basic model-theoretic notions for the convenience of the reader. 

@2003 American Mathematical Society 
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Definition 1. (1) A complete theory T is strongly minimal if any definable 
subset of any model M of T is finite or cofinite. (Here and throughout, 
"definable" means "definable with parameters".) We call a structure M 
strongly minimal if it has a strongly minimal theory. 

(2) A strongly minimal model M is trivial (or, more precisely, has trivial pre- 
geometry) if for all subsets A C M, 

acl(A)= U acl({a}). 
aEA 

Note that a strongly minimal theory in a countable language is uncountably 
categorical, and that triviality is really a property of the theory of a model rather 
than of the model itself. 

Roughly speaking, strongly minimal theories can be classified into three kinds: 
trivial, locally modular nontrivial, and non-locally modular. Canonical examples 
of these three kinds of theories are the theory of (w, S) (w with successor function), 
the theory of a vector space over a fixed field, and the theory of algebraically closed 
fields of a fixed characteristic, respectively. 

We will frequently use the concept of expansion by constants. We set notation 
in the following. 

Definition 2. Given a model M and a subset X C M, the expansion Mx of M by 
constants in X is obtained by adding constant symbols for each x c X (interpreted 
in the canonical way). We denote the corresponding expansion of the first-order 
language L by Lx. The elementary diagram of M is the LM-theory Th(MM). 

Note that expansion by constants preserves strong minimality and triviality. 
We can now state our 

Main Theorem. For any trivial, strongly minimal theory T, the elementary dia- 
gram of any model M of T is a model complete LM -theory. 

Note that a trivial, strongly minimal model need not be model complete in its 
original language, e.g., (w, S) (w with successor function) is not model complete. 
We also note that the triviality of T is used only once in our proof, namely, in 
Case 2 of the proof of Lemma 11. Finally, strong minimality is necessary in the 
hypothesis of the Main Theorem by Marker [15], who showed that for every n c w, 
there is an almost strongly minimal do-categorical (and thus also 81-categorical) 
theory which is not En-axiomatizable, while we show this to be false for trivial, 
strongly minimal theories in Corollary 18. 

For the proof of our theorem, fix any model M0 of a trivial, strongly minimal 
theory T. We will argue that the elementary diagram of Mo is model complete. 

To simplify the notation, let T* denote the theory Th((Mo)M0) and let L* be 
the language of T* (i.e., L* = LMo). In everything that follows, we will be working 
with the theory T* in the language L*. 

Additionally, fix a cardinal X, > IMo and fix models M C KV of T*, each of 
size i,. As both M and KV are models of T*, we may assume that Mo - M and 
Mo -< K. The entire argument is devoted to showing that M -< K. It is well 
known (see, e.g., Chang/Keisler [3, Corollary 3.5.3]) that the model completeness 
of T* follows from this. 
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In what follows, we require two standard facts about strongly minimal theories. 
The first is known as the non-finite cover property, which holds for any uncountably 
categorical theory (see, e.g., Shelah [18, Lemma IX.1.10]). In our context, it reads 
as follows. 

Lemma 3. For all ?*-formulas (p(T, y), there is a number k such that for every 
M* I= T* and every b from M*, either (p(b, M*) is infinite or has size at most k. 
Furthermore, the number k depends only on p and the partition of the free variables 
into (x Iy). O 

Thus, we are permitted to use the quantifiers 3"?? and 3?, where 3"'- x, y) 
is shorthand for 3'ky(x, y), and 3??y(x, y) is shorthand for -3 (T, y). We 
note a very Simple Observation, which is just an application of the pigeon-hole 
principle. However, we distinguish it as a lemma so that we can refer to it later. 

Lemma 4. If K F 3??yo(b, -) with lg(y) = k + 1, then there is a partition of 
y into wz with lg(w) = 1 and lg(z) = k such that K 1= 3?'w3zp(b, w, z). (The 
variable w need not be the first element of y, but it simplifies notation to write it 
as if it were.) O 

The second basic fact goes by the name of "Finite Satisfiability". The general 
formulation is that if Mo < K are models of a stable theory and JK l= p(b, c) for 
some LM0-formula and some b, c from N that are independent (i.e., do not fork over 
Mo), then there is a from Mo such that KV l= (p(, c). This fact follows easily from 
the fact that in a stable theory, every complete type over a model is definable (see, 
e.g., Pillay [17, Corollary 1.21]). As this is an important point, we record how this 
is manifested in the context of strongly minimal theories with the lemma below. 

Lemma 5. Suppose that Mo KV are models of a strongly minimal theory, b and 
c are tuples from N such that at least one of b, c C acl(Moe) for a single element 
e, and acl(Mob) nacl(Moc) = Mo. If X ,o V(b, c) for an ?M0 -formula V(x, y), then 
there is a from Mo such that K a l= -(6, c). 

Proof. By symmetry, suppose that b C acl(Mob), where b is a single element. From 
the note above, it suffices to show that b is independent from -c over Mo. But, if 
b were not independent from - over Mo, then (since b C acl(Mob)) b would not be 
independent from -c over Mo. Since b is a single element and the theory is strongly 
minimal, this would imply b c acl(MoZc), so b C acl(Moc). O 

The following well-known notion is crucial for the rest of this section. 

Definition 6. An ?*-formula V(x) is absolute if for all b from M, M l= p(b) if 
and only if KV l= p(b). 

To complete our proof that M < K, it suffices to show that every L*-formula is 
absolute. Clearly, every quantifier-free L*-formula is absolute. Similarly, the family 
of absolute formulas is closed under the Boolean operations. Thus, to complete our 
proof that T* is model complete, it suffices to show that if an ?*-formula V(x, y) 
is absolute, then 3yp(x, y) is absolute as well. The bulk of this section provides a 
verification of this claim. 
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Definition 7. An ?*-formula (x, y) is an (n, m)-formula if lg(x) = n and lg(y) = 
m. We identify three interrelated families of statements: 

* An,m, the statement that for all absolute (n, m)-formulas (,y), the for- 
mula 3 y) is absolute. 

* Bn,m, the statement that for all absolute (n, m)-formulas V(x, y), if b E Mn 
and K 3 3<??y(b, y), then p(b, N) = p(b,M), i.e., every realization of 
(b, y) in Nm is an element of Mm. 

* Cn,m, the statement that for all absolute (n, m)-formulas (x,y), the for- 
mula 3y(x, y) is absolute. 

In light of our observations above, showing that T* is model complete amounts to 
showing that Cn,j holds for all n c w. Clearly, by simply adding dummy variables, 
each of the three classes of properties is preserved by decreasing the indices (e.g., 
Bn,m implies Bn',m' for all n' < n and all m' < n). 

Lemma 8. For all n, m E W, Bn,m implies Cn,m. 

Proof. Fix n and m and assume that Bn,m holds. We will prove by induction that 
Cn,k holds for all k < m. To begin, note that Cn,o is vacuously true (since 3y(x, y) 
is simply V(x) when lg(y) = 0). So assume that Bn,m and Cn,k hold, where k < m. 
We argue that Cn,k+l holds. Fix an absolute (n, k + 1)-formula V(x, y) and b E Mn 
such that K 1= 3-yV(b, y). Our proof splits into two cases. 

Case 1. K 1= 3<??yV(by 
Then, since Bn,k+l holds (recall k + 1 < m), we have p(b,J) = p(b,M), hence 

there is c E Mk+E such that M - V(b, c). Thus, M 1= 3y(b, y) 
Case 2. K 1= 3??y(b, y). 
By the Simple Observation (Lemma 4), there is a partition of - into wz with 

lg(w) = 1 and lg(z) = k such that K t 3w3zp(b,w,z). Thus, by strong min- 
imality, {e E N K N =3z(b,e,z)} is cofinite, so there is a E Mo such that 
K 1= 3z p(b,a, z). Let f (x,z) be the (n,k)-formula (x, a, z). Since p is abso- 
lute, b is absolute, so, by Cn,k, 3z-+ is absolute. Thus, there is -c E Mk such that 
M l= p(b, a, c). So ac witnesses M = 3-y(b, ). 

Lemma 9. For all n, m C W, Bn,m implies An,m+l 

Proof. Fix n and m such that Bn,m holds. Note that Cn,m holds by Lemma 8. 
Fix an absolute (n, m + 1)-formula V(x, y) and choose b E Mn. Clearly, if K l 
3<??y(p(b, y), then M 1= 3<??yV(b, y). So assume K 1= 3??0"yV(b,y). It follows from 
the Simple Observation that there is a partition y into wz with lg(w) = 1 and 
lg(z) = m such that K\ 1= 3?'w3]zV(b,w, z). Thus, {e C N I X 1 o 3z(p(b, e, )} is 
cofinite, so there is an infinite subset {ai I i E w} of Mo such that K/ 1= 3zo(b, ai, z) 
for each i. For i E w, let f (x,z) be the (n,m)-formula (x,aj, ). Since o is 
absolute, each bj is absolute, so, by Cn,m, Pi4b is absolute for each i. Thus, for 
each i, there is ci c Mm such that M l= (b, ai, ci). The sequence (aici I w) 
witnesses M 1= 3??yV(b, y). 

Lemma 10. For all m c w, Bl,m (and hence Bo,m) holds. 

Proof. Let p(x, y) be an absolute (1, m)-formula and choose b E M such that 
K 3 <c?y(b,y). Choose r c w such that K l= 3=ryp(b,y). We argue that 
M 3= 3=r'yi(b, y) by splitting into two cases. On the one hand, if b C MO, then 
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3=ryir-9(b, y) is an L* -sentence true in NV, so 3=ry,(b, y) c T*, hence is satisfied by 
M. On the other hand, if b f Mo, then, by strong minimality, there is a finite 
subset {aj j < s} of Mo such that 

T* t= Vx(A x aj (X, 
j<s 

so M 3 -=ry,,(b, y) as desired. 
Now choose distinct co,... , c-i c Mm such that M F p(b, ci) for each i < r. By 

absoluteness, K = p (b, ci) for each i < r, so p(b, f) = I i < r} = (b, M). O 

Proposition 11. For all n, m C w, Bn,m+i and An+l,m imply Bn+i,m. 

Proof. In light of Lemma 10, we may assume n > 1. Choose an absolute L*-formula 
(, y, z), where lg(x) = n, lg(y) = 1, and lg(z) = m. Choose any b c Mn and 
b2 E M such that K V 3<??z(b,b2,z), and fix a witness c* E Nm such that 
X F (b, b2, c*). We will eventually show that c* c Mm. 

To start, fix any element e* c M \ acl(Mob). (For the whole of this proposition, 
we compute algebraic closures in the model V.) Such an element exists because 
acl(MOb)I = I acl(MO)I < K = IMI. Our argument splits into two cases. 
Case 1. XV ]= 3??(b, e*, z). 
It follows, by strong minimality and since e* , acl(Mob), that the set of all 

elements d c N with K F 3<??z(b, d, z~) is finite. Let 4'(x, y, z) denote the L*- 
formula 

(p (X, y,) A 3 <??wTp(x, y, w). 
Clearly, K F 4(b,b2, c*)* Since An+i,m holds (and since absolute formulas are 
closed under Boolean operations), $ is absolute. Let 

D ={d C N j K 3-fo(b, di)j. 

It follows from the first observation of this case that D is finite. Thus, the set 

E ={de Nm+l V X 0p(b,djE)} 

is finite as well. That is, XN F 3<??y-fo(b, y, zf). But Bn,m+l holds, hence every 
solution to this formula is in M. In particular, b2c* c Mm+l, so c* c Mm. 

Case 2. KV F] 3<??z(b, e*,). 
Let (- I j < r) be the realizations of p(b, e*, z) in Nm. Now fix j < r. Write 

c as (cij i < m). Let dj denote the subsequence of -j containing the cij's that 
satisfy cij c acl(Mob) and iij denote the corresponding subsequence of z. That is, 
iij consists of the zi for which cij c acl(Mob). Dually, let ej be the 'complement' of 
da. That is, ej is the subsequence of c;j containing all of the ci,j , acl(Mob). Let v;j 
denote the corresponding subsequence of zf. For notational convenience, we write 
c = djej and z = hjvj, although there is no reason why dj should be an initial 
segment of c;. 

By triviality, every element of ej is in acl(Moe*). (To see this, the formula 
p(b, e*, z~) demonstrates that each element of -e is in acl(Mobe*). But triviality 
implies that acl(Mobe*) = acl(Mob) U acl(Moe*) and the elements of ej were chosen 
to be outside of acl(Mob).) In particular, it follows that 

acl(Mobdj) n acl(Moe*ej ) = Mo. 
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(To see this, suppose we have f c acl(Mobdj) n acl(Moe*Ej). Then f E acl(Mob) n 
acl(Moe*). So if f f Mo then, by exchange, 

e* c acl(Mof) C acl(Mob), 

which is contrary to our choice of e*.) 
Clearly, 

iV F= (p(b, e*, IJ jI Ej) A 3 < ? Uj p(L, e*,I !j, IEj). 
So, by finite satisfiability (Lemma 5), there is (a&, mj) (corresponding to (e*, Ej)) 
from Mo such that 

X F (0(bIaj, dj, ) A 3`jp9(b, aj, uj,). 
Let Oj (, iij) denote the L*-formula (x, 6j, ij, aj). 

Similarly, by finite satisfiability again, there is (dj, a?) from Mo (corresponding 
to (b, dj)) such that 

Af t I e* a, Ej) A 3< 00v; p(Thj, e*,aj2, j). 

Let Oj (y, Tv) denote the L*-formula p(jlI y, aj2 vj) and let 

j (x,y) = /j (x, Uj) A 3<??Ujoj (x, 
- A Oj (y, -vi) A 3<??vj0j (y, v- ) 

Note that 

K F '/)j(b, d ) A 3<OUj0?/j(b, Uj) A Oj(e*, Ej) A 3<c?vjPj(e*, v;), 

hence N I= 6j (b, e*, c;). Since An,m holds, the L*-formulas 'ej, Oj, and 6j are all 
absolute. 

Now, returning to our original scenario, suppose K I= j (b, b2, c*) for some j < r. 
Let d denote the subsequence of c* (corresponding to ij) and let e* denote the 
subsequence of c* (corresponding to v;). Then 

K j (b, d*) A 3]<0TiUjj (bLI Uj). 

Thus, since Bn,m holds, d M M'9(ui). Similarly, 

K Oj 9(b2, ei) A 3<c??vjOj(b2, ;j), 

so, since Bi,m holds, e* E Mlg(uj). Hence c* c MI as required. 
Finally, suppose that K F -,j (b, b2, c*) for all j < r. Then N I= 7(b, b2,c 

where 
71(y y, Z):= (y Z) A 3<??zo(T, y,z) A A --j (T y, Z ). 

j<r 
It follows from An+,,m and the absoluteness of p and the Jj's that i7 is absolute. 

We claim that K F 3<??y-z7(b, y, z). To see this, let 

F= {f E N I AF= 3D((LIf,)} 

If F were infinite, then K F 3= r(b, f, z) would hold for every f c N \ acl(Mob). In 
particular, K F 3zfr(b, e*, 4). But what could such a solution be? Since (x, y, z) 
is a conjunct of i7, the only possible solutions to r7(b, e*, z) could be {c; j j < r}. 
But K F 6j(b,e*,?-j) for each j, hence K F 3zr1(b,e*,7). Thus F must be 
finite. However, for any f c F there are only finitely many h E Nm such that 
K_V r (b, f, hi). Thus there are only finitely many tuples fh E Nm+l that satisfy 
r1(b, y, z) in JV. That is, fi 1= 3<001yizr7(b, y, 4). 

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:26:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


TRIVIAL, STRONGLY MINIMAL THEORIES 3907 

Now, since Bn,m+i holds, every solution to r7(b, y, z) lies in M. In particular, 
b2C* E Mm+l, so c* E Mm, completing the proof. O 

Proof of the Main Theorem. As noted earlier, the model completeness of T* follows 
from a demonstration of M -< K. We first show that Bn,m must hold for all 
n, m C w. To see this, we argue, by induction on n, that Bn,m holds for all m. 
Lemma 10 provides the base case, i.e., BR,m holds for all m c w. So fix n > 1 
and assume that Bn,m holds for all m. We prove that Bn+l,m holds for all m, 
by induction on m. First, Bn+i,o holds vacuously. So assume that Bn+l,m holds 
for some m. Then Bn,m+2 holds by our inductive assumption and An+i,m+l holds 
by Lemma 9 since Bn+i,m holds. So Bn+l,m+l holds by Proposition 11, and our 
induction is complete. 

But now, Lemma 8 implies that Cn,m holds for all n, m c w. In particular, 
Cnj, holds for all n c w. But this precisely says that the family of absolute C*- 
formulas is closed under existential quantification. As we already knew that the 
family of absolute L*-formulas contains the quantifier-free formulas and is closed 
under Boolean connectives, we conclude that every L*-formula is absolute. Thus, 
M -< AV as required. O 

We conclude this section with some observations about this variant of model 
completeness, which has been studied by Kueker in work that has not yet been 
published [14]. All of the results in the remainder of this section are variants of 
theorems therein, but we include proofs for completeness. 

Definition 12. For any structure M, let ThV3 (MM) be the set of all V3-sentences 
o- c Th(MM) (i.e., in the language LM). 

Lemma 13. If the elementary diagram of a structure M is model complete, then 
Th(MM) is V]-axiomatizable. 

Proof. Well-known (see, e.g., Chang/Keisler [3, Proposition 3.5.10]). O 

In addition to providing a criterion that will be useful in the next section, the 
following proposition demonstrates that the model completeness of the elementary 
diagram of a structure M is a property of the theory of M. First, we need a 
definition. 

Definition 14. An V3-formula 0(y) of L and an existential L-formula 4'(x, y) form 
a linked pair (9, fb) (for T) if 

(1) TIF 3p'(y) and 
(2) T V yVyy'Vx[0(y) A 0(y') A 1(x, y) --+ (x, y )] 

Proposition 15. The elementary diagram of an L-structure M is model complete 
if and only if, for every L-formula p(x), there is a linked pair (9, fb) for the theory 
of M such that 

M F=V- (O(y) -- x>k [(y) )(T, y)]). 
Proof. First, suppose that the elementary diagram of M is model complete. Fix 
an L-formula (x). Since Th(MM) is model complete, there are an existential 
L-formula 4(T, y) and a tuple b from M such that M l d(b), where 
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So ThV3(MM) F d(b) by Lemma 13. By compactness, there is an V3-formula 0(y) 
in L such that 0(b) c ThV3(MM) and {0(b)} F 6(b). (Without loss of generality, 
by padding 6, we may assume that any constant symbol appearing in 0 already 
appears in 6.) 

Conversely, suppose that the right-hand side holds. Fix an LM-formula (x, a), 
where (x, z) is an L-formula and a is from M. Choose 0(y) and 'fb(X, z, y) corre- 
sponding to (x, z). Let b be any realization of 0(y) in M. Then 

M F= VpxV-z) +~(-x,, b)]. 
In particular, M F Vx[f(x, a) + 4(x, ai, b)]. Thus, every LM-formula is Th(MM)- 
equivalent to an existential LM-formula, so Th(MM) is model complete. O 

Corollary 16. If M and .N are elementarily equivalent L-structures, then the 
elementary diagram of M is model complete if and only if the elementary diagram 
of KV is model complete. In particular, if T is a complete theory and the elementary 
diagram of some model of T is model complete, then the elementary diagram of 
every model of T is model complete. D 

Proposition 17. Let T be any L-theory such that the elementary diagram of some 
model of T is model complete. Then T is 3V3-axiomatizable. 

Proof. Assume that a is an L-sentence such that T F a. Let M be a model 
of T for which the elementary diagram is model complete; so ThV3(MM) logically 
implies a. Therefore, there is a conjunction 4' of V3-sentences of LM which logically 
implies a. Since none of these extra constant symbols from M appears in a, we 
can existentially quantify out variables substituted for these constant symbols and 
obtain a formula of the desired complexity which logically implies a. D 

The following corollary follows immediately from our Main Theorem and Propo- 
sition 17. 

Corollary 18. Every trivial, strongly minimal theory is 3V3-axiomatizable. D 

2. MOTIVATION FROM AND CONSEQUENCES IN COMPUTABLE MODEL THEORY 

The original motivation of our work was a question in computable model theory. 
One of the goals of computable model theory is to determine the computational 
complexity of various models of a fixed first-order theory T. This is especially 
important in situations where the models of T are well understood classically, as 
for uncountably categorical T, where, by Baldwin/Lachlan [1], the countable models 
form an elementary chain of length w + 1 (unless T is totally categorical and thus 
uninteresting in our context). 

We recall some basic definitions of computable model theory. 

Definition 19. (1) A countable first-order language L is computable if its re- 
lation, function and constant symbols each form a computable set and the 
arity of any function or relation symbol of L can be computed effectively. 
(Thus, in particular, every finite language is computable.) 

For the remainder of the definition, fix a computable language L. 
(2) A countable L-model M is computable (or recursive) if the open (i.e., quan- 

tifier-free) diagram of M forms a computable set of LM-formulas. 
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(3) A countable L-model M is decidable if the (full) elementary diagram of M 
forms a computable set of LM-formulas. 

Similarly, for any set X C w, a countable model is X-computable, or X-decidable, 
respectively, if the open diagram, or full diagram, forms an X-computable set of 
LM-formulas. 

Of course, the above assumes a Godel numbering of the symbols of L and of 
all LM-formulas, which we suppress here. We also ignore here the question of 
different numberings of the same model (up to isomorphism), i.e., we call a model M 
computable, or decidable, if some isomorphic copy of M is computable or decidable, 
respectively, as defined above, or, more precisely, if there is some numbering of M 
such that the open diagram, or full diagram, respectively, forms a computable set 
of LM-formulas under the induced numbering of LM-formulas. 

Effectivizing the Henkin construction, one can easily see that any decidable first- 
order theory T has at least one decidable model M. In the case of an uncountably 
categorical decidable first-order theory T, Harrington [9] and Khisamiev [11] showed 
that indeed all countable models of T are decidable. If T is uncountably categorical 
but not decidable, however, it is possible that some of the countable models of 
T are computable while others are not. This was first shown by Goncharov [5], 
who constructed an uncountably categorical but not totally categorical theory in 
infinitely many unary relations for which only the prime model is computable. This 
naturally leads to the following 

Definition 20. Given a computable language L and an uncountably categorical 
but not totally categorical L-theory T, let M, (for a < w) be the ath model in 
the elementary chain of countable models of T given by Baldwin/Lachlan [1]. The 
spectrum of computable models of T is 

SCM(T) = {oa < w I Mc, is computable}. 

Clearly (e.g., using algebraically closed fields), SCM(T) = w U {W} is a possible 
spectrum of computable models. Goncharov's result [5] above can be restated as 
saying that SCM(T) = {0} is also a possible spectrum of computable models. A 
number of other possible spectra have been found by Kudaibergenov [13], Khous- 
sainov/Nies/Shore [12] and Nies [16]. The first nontrivial spectrum of computable 
models (i.e., + w U {w}) for a finite language (in fact, for the language of a single 
binary relation symbol) was found by Herwig/Lempp/Ziegler [10]. 

In the mid-1990's, Lempp raised the question of how much the various countable 
models of a fixed uncountably categorical theory T could differ in their computa- 
tional complexity. Goncharov's theory [5] has a computable prime model while all 
its countable nonprime models are not only O'-computable but can also compute 
0'. Lempp asked if it was possible to construct an uncountably categorical theory 
T with a computable prime model such that none of the countable nonprime mod- 
els is even arithmetical. (Here, a model is arithmetical iff it is X-computable for 
some arithmetical set X.) For a long time, and with various collaborators, he tried 
unsuccessfully to code more complicated sets, like 0" or 0"', into the countable 
nonprime models while keeping the prime model computable. 

It turned out the model theory "obstructed" the coding: All the theories for 
which the spectrum of computable models had been investigated thus far turned 
out to be strongly minimal and trivial. And for such theories, our Main Theorem 
answers Lempp's question as follows. 
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Theorem 21. Let M be a computable trivial, strongly minimal model. Then 
Th(M) forms a O"-computable set of L-sentences, and thus all countable models 
of Th(M) are O"-decidable (and so, in particular, O"-computable). 

Proof. By our Main Theorem, Th(MM) is model complete and thus V3-axiomat- 
izable. Then ThV3(MM) is a O"-computable set of formulas which axiomatizes 
Th(MM), and so Th(MM) and its reduct Th(M) are O"-computable sets of for- 
mulas as well. So, by Harrington [9] and Khisamiev [11] relativized to 0", any 
countable model of Th(M) is 0"-decidable. O 

We note that Goncharov and Khoussainov [6, 7] have shown that the hypothesis 
of strong minimality is necessary in Theorem 21 by exhibiting, for any n c w, a 
non-strongly minimal, trivial, uncountably categorical theory of degree o(n), all of 
whose countable models are computable. 

We also note here a preliminary result of ours, which preceded the above and 
which can be seen immediately from Lemma 3. 

Proposition 22. Let V' be the "infinitary" logic obtained from first-order logic 
by replacing the usual quantifiers 3 and V by the "infinitary" quantifiers 3<?? and 
V? (i.e., "there exist at most finitely many" and "for cofinitely many"). Then 
the L??-theory (and indeed the elementary L??-diagram) of any computable trivial, 
strongly minimal model is O'-computable. D 

Proposition 17 also allows us to bound the complexity of possible spectra of 
computable models. 

Proposition 23. Let T be an uncountably categorical but not totally categorical 
L-theory such that the elementary diagram of some model of T is model complete. 
Then the spectrum of computable models SCM(T) is a EO-subset of w U {W}. 

Proof. Suppose SCM(T) is nonempty since otherwise the result is obvious. Thus 
T has a computable model N. By Proposition 17, T is 3]3-axiomatizable and 
O"-computable. Given a computable L-model M, it is thus II? to check whether 
M = T; and given any computable L-model M F T and a tuple a c M, it is II? to 
check whether -a is algebraically independent in M, as we will show starting three 
paragraphs below. 

Now let k be the largest size of an algebraically independent subset (over 0) of 
the prime model of T. Since T is not 80-categorical, k is finite. Then a model 
M F T is isomorphic to the model MA4 from Definition 20 iff k + a is the largest 
size of an algebraically independent subset of M. (Here, we are broadly following 
Nies [16, Proposition 1.1].) 

So n c w is in SCM(T) iff there is an index e for a model M such that (i) 
M l= T, (ii) there is an algebraically independent subset of M of size k + n, and 
(iii) all subsets of M of size k + n + 1 are not algebraically independent. All 
this constitutes a E'-condition for n E SCM(T). (Whether w E SCM(T) can be 
determined nonuniformly.) 

We are thus left to show that algebraic independence of a tuple is a Hlo-property. 
A tuple a from a recursive model M of T is algebraically independent if and only 
if for all 0, ?b, b (where 0 is an V3-formula, ?b is existential, and b is a tuple from 
M) and all a* E a, one of the following holds: 

(a) (0, 'sb) is not a linked pair (as specified in Definition 14), or 
(b) M --0O(b), or 
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(c) M F-v/b(a,b), or 
(d) M 3= ]?x'(x,a', b) (where -a' = -a\ {a*}). 

Now (a) and (b) are AO (since we are already assuming that M F T), (c) is Il?, 
and (d) is HO. In particular, we have universal quantifiers in front of a HOI-relation, 
so algebraic independence is JI1. 

That the criterion works can be seen as follows. First, suppose that a is alge- 
braically independent. Fix any linked pair (0, 'sb) and b such that M l= 0(b) AOb(a, b). 
Then M 7 (a), where 77(X) := iy[0(y) A 'fb(T, y)]. Since a is algebraically indepen- 
dent, for any a* E -a there are infinitely many c in M such that M t7 r(ca') (where 
a= a \ {a* }). For each such c, choose b' such that 0(b ) A 'ik(ca', b ) holds in M. 
Since (0, 'sb) is a linked pair, this implies that 'Ob(cd', b) holds in M. Thus (d) holds. 

Conversely, suppose that -a is not algebraically independent. Then some a* E -a 
depends on a'-a \ {a*}. So, by the above argument, there is an L-formula p(x) 
that "witnesses it", i.e., M l= p(a) but there are only finitely many c such that 
M l= W(ca'). Now choose a linked pair (0, /) for p using Proposition 15 and choose 
any b from M such that 0(b) holds. It is now easy to check that conditions (a)-(d) 
all fail. C1 

Corollary 24. For any strongly minimal, trivial, not totally categorical theory T, 
the spectrum of computable models SCM(T) is a EZ-subset of w U {w}. 

Proof. Immediate by the Main Theorem and Proposition 23. (Note that triviality 
iniplies that k < 1 in the proof of Proposition 23.) C1 
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