23 research outputs found

    Angiogenesis and chronic kidney disease

    Get PDF
    The number of patients requiring renal replacement therapy due to end-stage renal disease (ESRD) is increasing worldwide. The prevalence of chronic kidney disease (CKD), and the importance of CKD as a risk factor in development of ESRD and in complicating cardiovascular disease (CVD) have been confirmed. In recent years, the involvement of angiogenesis-related factors in the progression of CKD has been studied, and the potential therapeutic effects on CKD of modulating these factors have been identified. Vascular endothelial growth factor (VEGF)-A, a potent pro-angiogenic factor, is involved in the development of the kidney, in maintenance of the glomerular capillary structure and filtration barrier, and in the renal repair process after injury. VEGF-A is also involved in the development of early diabetic nephropathy, demonstrated by the therapeutic effects of anti-VEGF-A antibody. Angiopoietin (Ang)-1 induces the maturation of newly formed blood vessels, and the therapeutic effects of Ang-1 in diabetic nephropathy have been described. In experimental models of diabetic nephropathy, the therapeutic effects of angiogenesis inhibitors, including angiostatin, endostatin and tumstatin peptides, the isocoumarin NM-3, and vasohibin-1, have been reported

    Lupus nephritis in male and female patients: same same but different?

    No full text

    Monocarboxylate transporter-1 (MCT1) protein expression in head and neck cancer affects clinical outcome

    No full text
    Treatment of locally advanced, unresectable head and neck squamous cell carcinoma (HNSCC) often yields only modest results with radiochemotherapy (RCT) as standard of care. Prognostic features related to outcome upon RCT might be highly valuable to improve treatment. Monocarboxylate transporters-1 and -4 (MCT1/MCT4) were evaluated as potential biomarkers. A cohort of HNSCC patients without signs for distant metastases was assessed eliciting 82 individuals eligible whereof 90% were diagnosed with locally advanced stage IV. Tumor specimens were stained for MCT1 and MCT4 in the cell membrane by immunohistochemistry. Obtained data were evaluated with respect to overall (OS) and progression-free survival (PFS). Protein expression of MCT1 and MCT4 in cell membrane was detected in 16% and 85% of the tumors, respectively. Expression of both transporters was not statistically different according to the human papilloma virus (HPV) status. Positive staining for MCT1 (n=13, negative in n=69) strongly worsened PFS with a hazard ratio (HR) of 3.1 (95%-confidence interval 1.6-5.7, p<0.001). OS was likewise affected with a HR of 3.8 (2.0-7.3, p<0.001). Multivariable Cox regression confirmed these findings. We propose MCT1 as a promising biomarker in HNSCC treated by primary RCT

    Abatacept in B7-1-positive proteinuric kidney disease

    No full text
    Abatacept (cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin fusion protein [CTLA-4-Ig]) is a costimulatory inhibitor that targets B7-1 (CD80). The present report describes five patients who had focal segmental glomerulosclerosis (FSGS) (four with recurrent FSGS after transplantation and one with primary FSGS) and proteinuria with B7-1 immunostaining of podocytes in kidney-biopsy specimens. Abatacept induced partial or complete remissions of proteinuria in these patients, suggesting that B7-1 may be a useful biomarker for the treatment of some glomerulopathies. Our data indicate that abatacept may stabilize \u3b21-integrin activation in podocytes and reduce proteinuria in patients with B7-1-positive glomerular disease

    Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19

    Get PDF
    The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural–mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.Peer Reviewe
    corecore