343 research outputs found

    Target Localization Accuracy Gain in MIMO Radar Based Systems

    Full text link
    This paper presents an analysis of target localization accuracy, attainable by the use of MIMO (Multiple-Input Multiple-Output) radar systems, configured with multiple transmit and receive sensors, widely distributed over a given area. The Cramer-Rao lower bound (CRLB) for target localization accuracy is developed for both coherent and non-coherent processing. Coherent processing requires a common phase reference for all transmit and receive sensors. The CRLB is shown to be inversely proportional to the signal effective bandwidth in the non-coherent case, but is approximately inversely proportional to the carrier frequency in the coherent case. We further prove that optimization over the sensors' positions lowers the CRLB by a factor equal to the product of the number of transmitting and receiving sensors. The best linear unbiased estimator (BLUE) is derived for the MIMO target localization problem. The BLUE's utility is in providing a closed form localization estimate that facilitates the analysis of the relations between sensors locations, target location, and localization accuracy. Geometric dilution of precision (GDOP) contours are used to map the relative performance accuracy for a given layout of radars over a given geographic area.Comment: 36 pages, 5 figures, submitted to IEEE Transaction on Information Theor

    Neutrophil survival on biomaterials is determined by surface topography

    Get PDF
    AbstractPurpose: Cardiovascular device-centered infections are a major cause of hospital morbidity, mortality, and expense. Caused by opportunistic bacteria, this phenomenon is thought to arise because of a defect in neutrophil bacterial killing. We have shown that neutrophils that adhere to polystyrene remain viable, whereas neutrophils that adhere to the vascular biomaterials expanded polytetrafluoroethylene (ePTFE) and Dacron undergo a rapid nonapoptotic death. This study was designed to test the hypothesis that surface topography is a determinant of the nonapoptotic death response of neutrophils to biomaterials. Methods: We took advantage of the ease with which a polystyrene surface can be manipulated to examine the effect of surface topography on neutrophil viability. Neutrophils were exposed to smooth or roughened polystyrene surfaces both in vivo and in vitro. Changes in cell membrane permeability and production of reactive oxygen species by individual cells were monitored with fluorescent dyes. Results: Host cells and isolated human neutrophils died rapidly after adhesion to roughened polystyrene. Neutrophils adherent to roughened surfaces produced more reactive oxygen intermediates than those adherent to smooth surfaces and were first to die. The cell death response precipitated by expanded polytetrafluoroethylene, Dacron, or the roughened surfaces was significantly reduced with treatment of the neutrophils with catalase, diphenylene iodonium, or the src kinase inhibitor PP2 before adhesion. Conclusions: Neutrophil adhesion to roughened materials triggers rapid production of reactive oxygen species and precipitates a nonapoptotic cell death. Understanding the material properties that trigger these responses is essential to development of the next generation of implantable biomaterials. (J Vasc Surg 2003;37:1082-90.

    Capacitated Vehicle Routing with Non-Uniform Speeds

    Get PDF
    The capacitated vehicle routing problem (CVRP) involves distributing (identical) items from a depot to a set of demand locations, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm. The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k vehicles with possibly different speeds, the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated. The presence of non-uniform speeds introduces difficulties for employing standard tour-splitting techniques. In order to get a better understanding of this technique in our context, we appeal to ideas from the 2-approximation for scheduling in parallel machine of Lenstra et al.. This motivates the introduction of a new approximate MST construction called Level-Prim, which is related to Light Approximate Shortest-path Trees. The last component of our algorithm involves partitioning the Level-Prim tree and matching the resulting parts to vehicles. This decomposition is more subtle than usual since now we need to enforce correlation between the size of the parts and their distances to the depot

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach

    Full text link
    In this paper, we study the kk-forest problem in the model of resource augmentation. In the kk-forest problem, given an edge-weighted graph G(V,E)G(V,E), a parameter kk, and a set of mm demand pairs ⊆V×V\subseteq V \times V, the objective is to construct a minimum-cost subgraph that connects at least kk demands. The problem is hard to approximate---the best-known approximation ratio is O(min⁥{n,k})O(\min\{\sqrt{n}, \sqrt{k}\}). Furthermore, kk-forest is as hard to approximate as the notoriously-hard densest kk-subgraph problem. While the kk-forest problem is hard to approximate in the worst-case, we show that with the use of resource augmentation, we can efficiently approximate it up to a constant factor. First, we restate the problem in terms of the number of demands that are {\em not} connected. In particular, the objective of the kk-forest problem can be viewed as to remove at most m−km-k demands and find a minimum-cost subgraph that connects the remaining demands. We use this perspective of the problem to explain the performance of our algorithm (in terms of the augmentation) in a more intuitive way. Specifically, we present a polynomial-time algorithm for the kk-forest problem that, for every Ï”>0\epsilon>0, removes at most m−km-k demands and has cost no more than O(1/Ï”2)O(1/\epsilon^{2}) times the cost of an optimal algorithm that removes at most (1−ϔ)(m−k)(1-\epsilon)(m-k) demands

    Global analysis of contact-dependent human-to-mouse intercellular mRNA and lncRNA transfer in cell culture

    Get PDF
    Full-length mRNAs transfer between adjacent mammalian cells via direct cell-to-cell connections called tunneling nanotubes (TNTs). However, the extent of mRNA transfer at the transcriptome-wide level (the 'transferome') is unknown. Here, we analyzed the transferome in an human-mouse cell co-culture model using RNA-sequencing. We found that mRNA transfer is non-selective, prevalent across the human transcriptome, and that the amount of transfer to mouse embryonic fibroblasts (MEFs) strongly correlates with the endogenous level of gene expression in donor human breast cancer cells. Typically, <1% of endogenous mRNAs undergo transfer. Non-selective, expression-dependent RNA transfer was further validated using synthetic reporters. RNA transfer appears contact-dependent via TNTs, as exemplified for several mRNAs. Notably, significant differential changes in the native MEF transcriptome were observed in response to co-culture, including the upregulation of multiple cancer and cancer-associated fibroblast-related genes and pathways. Together, these results lead us to suggest that TNT-mediated RNA transfer could be a phenomenon of physiological importance under both normal and pathogenic conditions

    Joint transmitter selection and resource management strategy based on low probability of intercept optimization for distributed radar networks

    Get PDF
    In this paper, a joint transmitter selection and resource management (JTSRM) strategy based on low probability of intercept (LPI) is proposed for target tracking in distributed radar network system. The basis of the JTSRM strategy is to utilize the optimization technique to control transmitting resources of radar networks in order to improve the LPI performance, while guaranteeing a specified target tracking accuracy. The weighted intercept probability and transmit power of radar networks is defined and subsequently employed as the optimization criterion for the JTSRM strategy. The resulting optimization problem is to minimize the LPI performance criterion of radar networks by optimizing the revisit interval, dwell time, transmitter selection, and transmit power subject to a desired target tracking performance and some resource constraints. An efficient and fast three‐step solution technique is also developed to solve this problem. The presented mechanism implements the optimal working parameters based on the feedback information in the tracking recursion cycle in order to improve the LPI performance for radar networks. Numerical simulations are provided to verify the superior performance of the proposed JTSRM strategy

    Staphylococcus aureus α-Toxin Triggers the Synthesis of B-Cell Lymphoma 3 by Human Platelets

    Get PDF
    The frequency and severity of bacteremic infections has increased over the last decade and bacterial endovascular infections (i.e., sepsis or endocarditis) are associated with high morbidity and mortality. Bacteria or secreted bacterial products modulate platelet function and, as a result, affect platelet accumulation at sites of vascular infection and inflammation. However, whether bacterial products regulate synthetic events in platelets is not known. In the present study, we determined if prolonged contact with staphylococcal α-toxin signals platelets to synthesize B-cell lymphoma (Bcl-3), a protein that regulates clot retraction in murine and human platelets. We show that α-toxin induced αIIbÎČ3-dependent aggregation (EC50 2.98 ”g/mL ± 0.64 ”g/mL) and, over time, significantly altered platelet morphology and stimulated de novo accumulation of Bcl-3 protein in platelets. Adherence to collagen or fibrinogen also increased the expression of Bcl-3 protein by platelets. α-toxin altered Bcl-3 protein expression patterns in platelets adherent to collagen, but not fibrinogen. Pretreatment of platelets with inhibitors of protein synthesis or the mammalian Target of Rapamycin (mTOR) decreased Bcl-3 protein expression in α-toxin stimulated platelets. In conclusion, Staphylococcus aureus-derived α-toxin, a pore forming exotoxin, exerts immediate (i.e., aggregation) and prolonged (i.e., protein synthesis) responses in platelets, which may contribute to increased thrombotic events associated with gram-positive sepsis or endocarditis

    An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress

    Get PDF
    Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which result in defects in P body assembly, can destabilize mRNA under unstressed conditions. We wished to examine whether mRNA would be destabilized in the edc3∆ lsm4∆C mutant as compared to the wild-type in response to osmotic stress, when P bodies are intense and numerous. Our results show that the edc3∆ lsm4∆C mutant limits the mRNA stability in response to osmotic stress, while the magnitude of stabilization was similar as compared to the wild-type. The reduced mRNA stability in the edc3∆ lsm4∆C mutant was correlated with a shorter PGK1 poly(A) tail. Similarly, the MFA2 mRNA was more rapidly deadenylated as well as significantly stabilized in the ccr4∆ deadenylation mutant in the edc3∆ lsm4∆C background. These results suggest a role for these decapping factors in stabilizing mRNA and may implicate P bodies as sites of reduced mRNA degradation
    • 

    corecore