5,940 research outputs found

    Solar wind data from the MIT plasma experiments on Pioneer 6 and Pioneer 7

    Get PDF
    Hourly averages are presented of solar wind proton parameters obtained from experiments on the Pioneer 6 and Pioneer 7 spacecraft during the period December 16, 1965 to August 1971. The number of data points available on a given day depends upon the spacecraft-earth distance, the telemetry bit rate, and the ground tracking time allotted to each spacecraft. Thus, the data obtained earlier in the life of each spacecraft are more complete. The solar wind parameters are given in the form of plots and listings. Trajectory information is also given along with a detailed description of the analysis procedures used to extract plasma parameters from the measured data

    Effect of speaker age on speech recognition and perceived listening effort in older adults with hearing loss

    Get PDF
    Published online January 2012Purpose: Older adults exhibit difficulty understanding speech that has been experimentally degraded. Age-related changes to the speech mechanism lead to natural degradations in signal quality. We tested the hypothesis that older adults with hearing loss would exhibit declines in speech recognition when listening to the speech of older adults, compared with the speech of younger adults, and would report greater amounts of listening effort in this task. Methods: Nineteen individuals with age-related hearing loss completed speech recognition and listening effort scaling tasks. Both were conducted in quiet, when listening to high and low predictability phrases produced by younger and older speakers respectively. Results: No significant difference in speech recognition existed when stimuli were derived from younger or older speakers. However, perceived effort was significantly higher when listening to speech from older adults, as compared to younger adults. Conclusions: For older individuals with hearing loss, natural degradations in signal quality may require greater listening effort. However, they do not interfere with speech recognition – at least in quiet. Follow-up investigation of the effect of speaker age on speech recognition and listening effort under more challenging noise conditions appears warranted

    A tracking algorithm for the stable spin polarization field in storage rings using stroboscopic averaging

    Full text link
    Polarized protons have never been accelerated to more than about 2525GeV. To achieve polarized proton beams in RHIC (250GeV), HERA (820GeV), and the TEVATRON (900GeV), ideas and techniques new to accelerator physics are needed. In this publication we will stress an important aspect of very high energy polarized proton beams, namely the fact that the equilibrium polarization direction can vary substantially across the beam in the interaction region of a high energy experiment when no countermeasure is taken. Such a divergence of the polarization direction would not only diminish the average polarization available to the particle physics experiment, but it would also make the polarization involved in each collision analyzed in a detector strongly dependent on the phase space position of the interacting particle. In order to analyze and compensate this effect, methods for computing the equilibrium polarization direction are needed. In this paper we introduce the method of stroboscopic averaging, which computes this direction in a very efficient way. Since only tracking data is needed, our method can be implemented easily in existing spin tracking programs. Several examples demonstrate the importance of the spin divergence and the applicability of stroboscopic averaging.Comment: 39 page

    The geomorphological setting of some of Scotland's east coast freshwater mills: a comment on Downward and Skinner (2005) ‘Working rivers: the geomorphological legacy...’

    Get PDF
    Many of the water mills on Scotland's east coast streams, unlike those discussed recently by Downward and Skinner (2005 Area 37 138–47), are found in predominantly bedrock reaches immediately downstream of knickpoints (i.e. bedrock steps). Bedrock knickpoints in the lower reaches of Scottish rivers are a widespread fluvial response to the glacio-isostatic rebound of northern Britain. These steps in the river profile propagate headward over time, but for intervals of a few centuries or so they are sufficiently stable to be exploited for the elevational fall necessary to power the mill wheel. Many of these mills were apparently powered by ‘run-of-the-river’, as are some today that formerly had mill dams. The typical lack of sediment storage along the erosional lower reaches of many Scottish rivers means that failure of mill structures in Scotland will probably have less dramatic geomorphological and management implications than those suggested by Downward and Skinner for southern English rivers

    Self-Similar Magnetocentrifugal Disk Winds with Cylindrical Asymptotics

    Get PDF
    We construct a two-parameter family of models for self-collimated, radially self-similar magnetized outflows from accretion disks. A flow at zero initial poloidal speed leaves the surface of a rotating disk and is accelerated and redirected toward the pole by helical magnetic fields threading the disk. At large distances from the disk, the flow streamlines asymptote to wrap around the surfaces of nested cylinders. In constrast to previous disk wind modeling, we have explicitly implemented the cylindrical asymptotic boundary condition to examine the consequences for flow dynamics. The solutions are characterized by the logarithmic gradient of the magnetic field strength and the ratios between the footpoint radius R_0 and asymptotic radius R_1 of streamlines; the Alfven radius must be found as an eigenvalue. Cylindrical solutions require the magnetic field to drop less steeply than 1/R. We find that the asymptotic poloidal speed on any streamline is typically just a few tenths of the Kepler speed at the corresponding disk footpoint. The asymptotic toroidal Alfven speed is, however, a few times the footpoint Kepler speed. We discuss the implications of the models for interpretations of observed optical jets and molecular outflows from young stellar systems. We suggest that the difficulty of achieving strong collimation in vector velocity simultaneously with a final speed comparable to the disk rotation rate argues against isolated jets and in favor of models with broader winds.Comment: 39 pages, Latex (uses AAS Latex macros), 6 eps figures, postscript preprint with embedded figures available from http://www.astro.umd.edu/~ostriker/professional/publications.html , to appear in ApJ 9/1/9

    Altered activity–rest patterns in mice with a human autosomal-dominant nocturnal frontal lobe epilepsy mutation in the β2 nicotinic receptor

    Get PDF
    High-affinity nicotinic receptors containing β2 subunits (β2^*) are widely expressed in the brain, modulating many neuronal processes and contributing to neuropathologies such as Alzheimer's disease, Parkinson's disease and epilepsy. Mutations in both the α4 and β2 subunits are associated with a rare partial epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In this study, we introduced one such human missense mutation into the mouse genome to generate a knock-in strain carrying a valine-to-leucine mutation β2V287L. β2^(V287L) mice were viable and born at an expected Mendelian ratio. Surprisingly, mice did not show an overt seizure phenotype; however, homozygous mice did show significant alterations in their activity–rest patterns. This was manifest as an increase in activity during the light cycle suggestive of disturbances in the normal sleep patterns of mice; a parallel phenotype to that found in human ADNFLE patients. Consistent with the role of nicotinic receptors in reward pathways, we found that β2^(V287L) mice did not develop a normal proclivity to voluntary wheel running, a model for natural reward. Anxiety-related behaviors were also affected by the V287L mutation. Mutant mice spent more time in the open arms on the elevated plus maze suggesting that they had reduced levels of anxiety. Together, these findings emphasize several important roles of β2^* nicotinic receptors in complex biological processes including the activity–rest cycle, natural reward and anxiety

    Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform

    Get PDF
    Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.

    MHD simulations of penumbra fine structure

    Get PDF
    We present results of numerical 3D MHD simulations with radiative energy transfer of fine structure in a small sunspot of about 4 Mm width. The simulations show the development of filamentary structures and flow patterns that are, except for the lengths of the filaments, very similar to those observed. The filamentary structures consist of gaps with reduced field strength relative to their surroundings. Calculated synthetic images show dark cores like those seen in the observations; the dark cores are the result of a locally elevated τ=1\tau=1 surface. The magnetic field in these cores is weaker and more horizontal than for adjacent brighter structures, and the core support a systematic outflow. Movies show migration of the dark-cored structures towards the umbra, and fragments of magnetic flux that are carried away from the spot by a large scale `moat flow'. We conclude that the simulations are in qualitative agreement with observed penumbra filamentary structures, Evershed flows and moving magnetic features.Comment: 6 pages, 7 figures, submitted to Ap
    • …
    corecore