517 research outputs found

    Comparing Tycho-2 Astrometry with UCAC1

    Get PDF
    The Tycho-2 Catalogue, released in February 2000, is based on the ESA Hipparcos space mission data and various ground-based catalogs for proper motions. An external comparison of the Tycho-2 astrometry is presented here using the first U.S. Naval Observatory CCD Astrograph Catalog (UCAC1). The UCAC1 data were obtained from observations performed at CTIO between February 1998 and November 1999, using the 206 mm aperture 5-element lens astrograph and a 4k x 4k CCD. Only small systematic differences in position between Tycho-2 and UCAC1 up to 15 milliarcseconds (mas) are found, mainly as a function of magnitude. The standard deviations of the distributions of the position differences are in the 35 to 140 mas range, depending on magnitude. The observed scatter in the position differences is about 30% larger than expected from the combined formal, internal errors, also depending on magnitude. The Tycho-2 Catalogue has the more precise positions for bright stars (V <= 10 mag) while the UCAC1 positions are significantly better at the faint end (11 mag <= V <= 12.5 mag) of the magnitude range in common. UCAC1 goes much fainter (to R=16) than Tycho-2; however complete sky coverage is not expected before mid 2003.Comment: LaTeX, 8 pages, 3 PS figures, accepted by AJ (Aug 2000) see also http://ad.usno.navy.mil/ad/ucac/ request for UCAC1 CD-ROM: e-mail to [email protected] request for Tycho-2 CD-ROM: e-mail to [email protected] or [email protected]

    GAIA: Composition, Formation and Evolution of the Galaxy

    Get PDF
    The GAIA astrometric mission has recently been approved as one of the next two `cornerstones' of ESA's science programme, with a launch date target of not later than mid-2012. GAIA will provide positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars throughout our Galaxy (and into the Local Group), amounting to about 1 per cent of the Galactic stellar population. GAIA's main scientific goal is to clarify the origin and history of our Galaxy, from a quantitative census of the stellar populations. It will advance questions such as when the stars in our Galaxy formed, when and how it was assembled, and its distribution of dark matter. The survey aims for completeness to V=20 mag, with accuracies of about 10 microarcsec at 15 mag. Combined with astrophysical information for each star, provided by on-board multi-colour photometry and (limited) spectroscopy, these data will have the precision necessary to quantify the early formation, and subsequent dynamical, chemical and star formation evolution of our Galaxy. Additional products include detection and orbital classification of tens of thousands of extra-Solar planetary systems, and a comprehensive survey of some 10^5-10^6 minor bodies in our Solar System, through galaxies in the nearby Universe, to some 500,000 distant quasars. It will provide a number of stringent new tests of general relativity and cosmology. The complete satellite system was evaluated as part of a detailed technology study, including a detailed payload design, corresponding accuracy assesments, and results from a prototype data reduction development.Comment: Accepted by A&A: 25 pages, 8 figure

    Cosmic Optical Background: the View from Pioneer 10/11

    Full text link
    We present the new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (~0.44 um) and red (~0.64 um) bands. Accurate starlight subtraction is achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with thermal 100 um brightness, while another betrays a constant level in the lowest 100 um brightness region. Presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has the extragalactic origin (i.e., the COB). The derived COB brightness is (1.8 +/- 0.9) x 10^(-9) and (1.2 +/- 0.9) x 10^(-9) erg/s/cm2/sr/A at the blue and red band, respectively, or 7.9 +/- 4.0 and 7.7 +/- 5.8 nW/m2/sr. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions of other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL) - scattered starlight by the interstellar dust. We derive the mean DGL-to-100 um brightness ratios of 2.1 x 10^(-3) and 4.6 x 10^(-3) at the two bands, which are roughly consistent with the previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.Comment: Accepted for publication in the Astrophysical Journal; Typos correcte

    From Hipparcos to Gaia

    Full text link
    The measurement of the positions, distances, motions and luminosities of stars represents the foundations of modern astronomical knowledge. Launched at the end of the eighties, the ESA Hipparcos satellite was the first space mission dedicated to such measurements. Hipparcos improved position accuracies by a factor of 100 compared to typical ground-based results and provided astrometric and photometric multi-epoch observations of 118,000 stars over the entire sky. The impact of Hipparcos on astrophysics has been extremely valuable and diverse. Building on this important European success, the ESA Gaia cornerstone mission promises an even more impressive advance. Compared to Hipparcos, it will bring a gain of a factor 50 to 100 in position accuracy and of a factor of 10,000 in star number, collecting photometric, spectrophotometric and spectroscopic data for one billion celestial objects. During its 5-year flight, Gaia will measure objects repeatedly, up to a few hundred times, providing an unprecedented database to study the variability of all types of celestial objects. Gaia will bring outstanding contributions, directly or indirectly, to most fields of research in astrophysics, such as the study of our Galaxy and of its stellar constituents, the search for planets outside the solar system.Comment: 6 pages. New Horizons in Time Domain Astronomy Proceedings IAU Symposium No. 285, 2012, E. Griffin, B. Hanisch & R. Seaman, ed

    The PPMXL catalog of positions and proper motions on the ICRS. Combining USNO-B1.0 and 2MASS

    Full text link
    USNO-B1.0 and 2MASS are the most widely used full-sky surveys. However, 2MASS has no proper motions at all, and USNO-B1.0 published only relative, not absolute (i.e. on ICRS) proper motions. We performed a new determination of mean positions and proper motions on the ICRS system by combining USNO-B1.0 and 2MASS astrometry. This catalog is called PPMXL {VO-access to the catalog is possible via http://vo.uni-hd.de/ppmxl}, and it aims to be complete from the brightest stars down to about V20V \approx 20 full-sky. PPMXL contains about 900 million objects, some 410 million with 2MASS photometry, and is the largest collection of ICRS proper motions at present. As representative for the ICRS we chose PPMX. The recently released UCAC3 could not be used because we found plate-dependent distortions in its proper motion system north of -20^\circ declination. UCAC3 served as an intermediate system for δ20\delta \leq -20^\circ. The resulting typical individual mean errors of the proper motions range from 4 mas/y to more than 10 mas/y depending on observational history. The mean errors of positions at epoch 2000.0 are 80 to 120 mas, if 2MASS astrometry could be used, 150 to 300 mas else. We also give correction tables to convert USNO-B1.0 observations of e.g. minor planets to the ICRS system.Comment: 9 pages, 9 figure

    Searching for links between magnetic fields and stellar evolution. II. The evolution of magnetic fields as revealed by observations of Ap stars in open clusters and associations

    Full text link
    The evolution of magnetic fields in Ap stars during the main sequence phase is presently mostly unconstrained by observation because of the difficulty of assigning accurate ages to known field Ap stars. We are carrying out a large survey of magnetic fields in cluster Ap stars with the goal of obtaining a sample of these stars with well-determined ages. In this paper we analyse the information available from the survey as it currently stands. We select from the available observational sample the stars that are probably (1) cluster or association members and (2) magnetic Ap stars. For the stars in this subsample we determine the fundamental parameters T_eff, log(L/L_o), and M/M_o. With these data and the cluster ages we assign both absolute age and fractional age (the fraction of the main sequence lifetime completed). For this purpose we have derived new bolometric corrections for Ap stars. Magnetic fields are present at the surfaces of Ap stars from the ZAMS to the TAMS. Statistically for the stars with M > 3 M_o the fields decline with advancing age approximately as expected from flux conservation together with increased stellar radius, or perhaps even faster than this rate, on a time scale of about 3 10^7 yr. In contrast, lower mass stars show no compelling evidence for field decrease even on a timescale of several times 10^8 yr. Study of magnetic cluster stars is now a powerful tool for obtaining constraints on evolution of Ap stars through the main sequence. Enlarging the sample of known cluster magnetic stars, and obtaining more precise RMS fields, will help to clarify the results obtained so far. Further field observations are in progress.Comment: Accepted by Astronomy & Astrophysic

    Searching for unknown open clusters in the Tycho-2 catalog

    Full text link
    We present 11 new open cluster candidates found in a systematic search for unknown star clusters using the astrometric and photometric data included in the Tycho2 catalog. The possible existence of these stellar aggregates is supported by the analysis of proper motions, color-magnitude diagrams, stellar density distributions, and by the visual inspection of the Digitized Sky Survey (DSS) plates. With these tools we were able to determine mean absolute proper motions as well as preliminary reddenings, distances and ages for the majority of the candidates. We found that most of them are possibly nearby (closer than about 600 pc) open clusters never studied before.Comment: 14 pages, 6 figures. Accepted by A&

    Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood

    Full text link
    Debris discs - analogous to the Asteroid and Kuiper-Edgeworth belts in the Solar system - have so far mostly been identified and studied in thermal emission shortward of 100 um. The Herschel space observatory and the SCUBA-2 camera on the James Clerk Maxwell Telescope will allow efficient photometric surveying at 70 to 850 um, which allow for the detection of cooler discs not yet discovered, and the measurement of disc masses and temperatures when combined with shorter wavelength photometry. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey and the DEBRIS Herschel Open Time Key Project are complimentary legacy surveys observing samples of ~500 nearby stellar systems. To maximise the legacy value of these surveys, great care has gone into the target selection process. This paper describes the target selection process and presents the target lists of these two surveys.Comment: 67 pages with full tables, 7 figures, accepted to MNRA

    The investigation of absolute proper motions of the XPM Catalogue

    Full text link
    The XPM-1.0 is the regular version of the XPM catalogue. In comparison with XPM the astrometric catalogue of about 280 millions stars covering entire sky from -90 to +90 degrees in declination and in the magnitude range 10^m<B<22^m is something improved. The general procedure steps were followed as for XPM, but some of them are now performed on a more sophisticated level. The XPM-1.0 catalogue contains star positions, proper motions, 2MASS and USNO photometry of about 280 millions of the sources. We present some investigations of the absolute proper motions of XPM-1.0 catalogue and also the important information for the users of the catalogue. Unlike previous version, the XPM-1.0 contains the proper motions over the whole sky without gaps. In the fields, which cover the zone of avoidance or which contain less than of 25 galaxies a quasi absolute calibration was performed. The proper motion errors are varying from 3 to 10 mas/yr, depending on a specific field. The zero-point of the absolute proper motion frame (the absolute calibration) was specified with more than 1 million galaxies from 2MASS and USNO-A2.0. The mean formal error of absolute calibration is less than 1 mas/yr.Comment: 11 pages, 9 figures, accepte

    Kinematic Control of the Inertiality of the System of Tycho-2 and UCAC2 Stellar Proper Motions

    Full text link
    Based on the Ogorodnikov-Milne model, we analyze the proper motions of Tycho-2 and UCAC2 stars. We have established that the model component that describes the rotation of all stars under consideration around the Galactic y axis differs significantly from zero at various magnitudes. We interpret this rotation found using the most distant stars as a residual rotation of the ICRS/Tycho-2 system relative to the inertial reference frame. For the most distant (d900d\approx900 pc) Tycho-2 and UCAC2 stars, the mean rotation around the Galactic y axis has been found to be M13=0.37±0.04M_{13}=-0.37\pm0.04 mas yr1^{-1}. The proper motions of UCAC2 stars with magnitudes in the range 1215m12-15^m are shown to be distorted appreciably by the magnitude equation in μαcosδ\mu_\alpha\cos\delta, which has the strongest effect for northern-sky stars with a coefficient of 0.60±0.05-0.60\pm0.05 mas yr1^{-1} mag1^{-1}. We have detected no significant effect of the magnitude equation in the proper motions of UCAC2 stars brighter than 11m\approx11^m.Comment: 15 pages, 6 figure
    corecore