806 research outputs found

    A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat

    Get PDF
    We present a six-year global climatology of cloud properties, obtained from observations of the Atmospheric Infrared Sounder (AIRS) onboard the NASA Aqua satellite. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined with CloudSat observations, both missions launched as part of the A-Train in 2006, provide a unique opportunity to evaluate the retrieved AIRS cloud properties such as cloud amount and height. In addition, they permit to explore the vertical structure of different cloud types. AIRS-LMD cloud detection agrees with CALIPSO about 85% over ocean and about 75% over land. Global cloud amount has been estimated from 66% to 74%, depending on the weighting of not cloudy AIRS footprints by partial cloud cover from 0 to 0.3. 42% of all clouds are high clouds, and about 42% of all clouds are single layer low-level clouds. The "radiative" cloud height determined by the AIRS-LMD retrieval corresponds well to the height of the maximum backscatter signal and of the "apparent middle" of the cloud. Whereas the real cloud thickness of high opaque clouds often fills the whole troposphere, their "apparent" cloud thickness (at which optical depth reaches about 5) is on average only 2.5 km. The real geometrical thickness of optically thin cirrus as identified by AIRS-LMD is identical to the "apparent" cloud thickness with an average of about 2.5 km in the tropics and midlatitudes. High clouds in the tropics have slightly more diffusive cloud tops than at higher latitudes. In general, the depth of the maximum backscatter signal increases nearly linearly with increasing "apparent" cloud thickness. For the same "apparent" cloud thickness optically thin cirrus show a maximum backscatter about 10% deeper inside the cloud than optically thicker clouds. We also show that only the geometrically thickest opaque clouds and (the probably surrounding anvil) cirrus penetrate the stratosphere in the tropics

    Quantum Hall effect in exfoliated graphene affected by charged impurities: metrological measurements

    Full text link
    Metrological investigations of the quantum Hall effect (QHE) completed by transport measurements at low magnetic field are carried out in a-few-μm\mu\mathrm{m}-wide Hall bars made of monolayer (ML) or bilayer (BL) exfoliated graphene transferred on Si/SiO2\textrm{Si/SiO}_{2} substrate. From the charge carrier density dependence of the conductivity and from the measurement of the quantum corrections at low magnetic field, we deduce that transport properties in these devices are mainly governed by the Coulomb interaction of carriers with a large concentration of charged impurities. In the QHE regime, at high magnetic field and low temperature (T<1.3KT<1.3 \textrm{K}), the Hall resistance is measured by comparison with a GaAs based quantum resistance standard using a cryogenic current comparator. In the low dissipation limit, it is found quantized within 5 parts in 10710^{7} (one standard deviation, 1σ1 \sigma) at the expected rational fractions of the von Klitzing constant, respectively RK/2R_{\mathrm{K}}/2 and RK/4R_{\mathrm{K}}/4 in the ML and BL devices. These results constitute the most accurate QHE quantization tests to date in monolayer and bilayer exfoliated graphene. It turns out that a main limitation to the quantization accuracy, which is found well above the 10910^{-9} accuracy usually achieved in GaAs, is the low value of the QHE breakdown current being no more than 1μA1 \mu\mathrm{A}. The current dependence of the longitudinal conductivity investigated in the BL Hall bar shows that dissipation occurs through quasi-elastic inter-Landau level scattering, assisted by large local electric fields. We propose that charged impurities are responsible for an enhancement of such inter-Landau level transition rate and cause small breakdown currents.Comment: 14 pages, 9 figure

    Performance Characterization of State-Of-The-Art Deep Learning Workloads on an IBM Minsky Platform

    Get PDF
    Deep learning algorithms are known to demand significant computing horsepower, in particular when it comes to training these models. The capability of developing new algorithms and improving the existing ones is in part determined by the speed at which these models can be trained and tested. One alternative to attain significant performance gains is through hardware acceleration. However, deep learning has evolved into a large variety of models, including but not limited to fully-connected, convolutional, recurrent and memory networks. Therefore, it appears difficult that a single solution can provide effective acceleration for this entire deep learning ecosystem. This work presents detailed characterization results of a set of archetypal state-of-the-art deep learning workloads on a last-generation IBM POWER8 system with NVIDIA Tesla P100 GPUs and NVLink interconnects. The goal is to identify the performance bottlenecks (i.e. the accelerable portions) to provide a thorough study that can guide the design of prospective acceleration platforms in a more effective manner. In addition, we analyze the role of the GPU (as one particular type of acceleration engine) and its effectiveness as a function of the size of the problem

    Repetitive DNA Restructuring Across Multiple Nicotiana Allopolyploidisation Events Shows a Lack of Strong Cytoplasmic Bias in Influencing Repeat Turnover.

    Get PDF
    Allopolyploidy is acknowledged as an important force in plant evolution. Frequent allopolyploidy in Nicotiana across different timescales permits the evaluation of genome restructuring and repeat dynamics through time. Here we use a clustering approach on high-throughput sequence reads to identify the main classes of repetitive elements following three allotetraploid events, and how these are inherited from the closest extant relatives of the maternal and paternal subgenome donors. In all three cases, there was a lack of clear maternal, cytoplasmic bias in repeat evolution, i.e., lack of a predicted bias towards maternal subgenome-derived repeats, with roughly equal contributions from both parental subgenomes. Different overall repeat dynamics were found across timescales of <0.5 (N. rustica L.), 4 (N. repanda Willd.) and 6 (N. benthamiana Domin) Ma, with nearly additive, genome upsizing, and genome downsizing, respectively. Lower copy repeats were inherited in similar abundance to the parental subgenomes, whereas higher copy repeats contributed the most to genome size change in N. repanda and N. benthamiana. Genome downsizing post-polyploidisation may be a general long-term trend across angiosperms, but at more recent timescales there is species-specific variance as found in Nicotiana

    Potential of herbariomics for studying repetitive DNA in angiosperms

    Get PDF
    Repetitive DNA has an important role in angiosperm genomes and is relevant to our understanding of genome size variation, polyploidisation and genome dynamics more broadly. Much recent work has harnessed the power of high-throughput sequencing (HTS) technologies to advance the study of repetitive DNA in flowering plants. Herbarium collections provide a useful historical perspective on genome diversity through time, but their value for the study of repetitive DNA has not yet been explored. We propose that herbarium DNA may prove as useful for studies of repetitive DNA content as it has for reconstructed organellar genomes and low-copy nuclear sequence data. Here we present a case study in the tobacco genus (Nicotiana; Solanaceae), showing that herbarium specimens can provide accurate estimates of the repetitive content of angiosperm genomes by direct comparison with recently-collected material. We show a strong correlation between the abundance of repeat clusters, e.g., different types of transposable elements and satellite DNA, in herbarium collections versus recent material for four sets of Nicotiana taxa. These results suggest that herbarium specimen genome sequencing (herbariomics) holds promise for both repeat discovery and analyses that aim to investigate the role of repetitive DNAs in genomic evolution, particularly genome size evolution and/or contributions of repeats to the regulation of gene space

    Disparate effects of chronic and acute theophylline on cyclosporine A nephrotoxicity

    Get PDF
    Abstract : We previously developed a model of acute cyclosporine A (CsA)-induced vasomotor nephrotoxicity in rabbits. As exogenous adenosine infusion mimics the haemodynamic changes that characterize acute renal failure (ARF), we wanted to know whether adenosine was a mediator in this model and whether an adenosine receptor blocker could prevent the CsA-induced ARF. Group 1 were untreated controls. Group 2 received CsA (25 mg/kg per day) for 5 days. Renal function parameters were measured, showing ARF in all animals compared to controls. Theophylline (1 mg/kg i.v. bolus) was then administered and renal function was reassessed. Theophylline significantly reduced renal vascular resistance (-8%) and increased renal blood flow (RBF) (+20%), glomerular filtration rate (GFR) (+50%), filtration fraction (+24%) and diuresis (+73%), suggesting that adenosine was involved in the CsA-induced ARF. In group 3, theophylline (30 mg/kg per day) was given concomitantly with CsA for 5 days. GFR was normalized, but theophylline did not hinder the drop in RBF seen with CsA alone in group 2. Microscopy observation of the kidneys showed that chronic theophylline administration aggravated the morphological changes induced by CsA alone. We conclude that CsA administration for 5 days induced a vasomotor nephropathy with an adenosine-mediated afferent arteriolar constriction which cannot be prevented by concomitant theophylline administratio

    Necrotizing pneumonia in children: Chest computed tomography vs. lung ultrasound.

    Get PDF
    The utilization of contrast-enhanced computed tomography (CT) of the chest for the diagnosis of necrotizing pneumonia (NP), a complication of community-acquired pneumonia, is controversial because of the inherent ionizing radiation involved. Over the past few years, the growing availability of bedside Lung Ultrasound (LUS) devices has led to increased use of this nonionizing imaging method for diagnosing thoracic pathology, including pneumonia. The objectives of this study were as follows: first, to compare the performance of LUS vs. CT in the identification of certain radiological signs of NP, and second, to determine whether LUS could replace CT in the diagnosis of NP. We compared retrospectively the CT and LUS images of 41 patients between 2005 and 2018 in whom at least one contrast-injected chest CT scan and one LUS had been undertaken fewer than 7 days apart. Pleural effusions were demonstrated almost systematically (100% on CT vs. 95.8% on LUS). Visualization of septations in pleural effusions was clearly superior on LUS (20.4% on CT vs 62.5% on LUS). Concerning the detection of necrosis, we observed a strong correlation between LUS and the gold-standard CT (95.8% on LUS vs. 93.7% on CT). Parenchymal cavities were more easily detected on CT than on LUS (79.1 vs. 35.4%). LUS has shown to be as effective as CT in the diagnosis of NP. The use of CT in patients with NP could be limited to the detection of complications such as bronchopleural fistulae in unfavorably evolving diseases

    CLIC simulations from the start of the linac to the interaction point

    Get PDF
    Simulations for linear colliders are traditionally performed separately for the different sub-systems, like damping ring, bunch compressor, linac, and beam delivery. The beam properties are usually passed from one sub-system to the other via bunch charge, RMS transverse emittances, RMS bunch length, average energy and RMS energy spread. It is implicitly assumed that the detailed 6D correlations in the beam distribution are not relevant for the achievable luminosity. However, it has recently been shown that those correlations can have a strong effect on the beam-beam interaction. We present first results on CLIC simulations that integrate linac, beam delivery, and beam-beam interaction. These integrated simulations also allow a better simulation of time-dependent effects, like ground perturbations and interference between several beam-based feedbacks
    corecore