64 research outputs found

    Generation of high-frequency strain waves during femtosecond demagnetization of Fe/MgO films

    Get PDF
    We use femtosecond time-resolved hard x-ray scattering to detect coherent acoustic phonons excited during ultrafast laser demagnetization of bcc Fe films. We determine the lattice strain propagating through the film through analysis of the oscillations in the x-ray scattering signal as a function of momentum transfer. The width of the strain wavefront is ~100 fs, similar to demagnetization timescales. First-principles calculations show that the high-frequency Fourier components of the strain, which give rise to the sharp wavefront, could in part originate from non-thermal dynamics of the lattice not considered in the two-temperature model.Comment: 5 pages, 3 figure

    Magnetic switching in granular FePt layers promoted by near-field laser enhancement

    Full text link
    Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle x-ray scattering at an x-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, one order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between "up" and "down" magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material, with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer

    Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys

    Get PDF
    Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 107 A cm−2. Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states

    Beyond a phenomenological description of magnetostriction

    Full text link
    We use ultrafast x-ray and electron diffraction to disentangle spin-lattice coupling of granular FePt in the time domain. The reduced dimensionality of single-crystalline FePt nanoparticles leads to strong coupling of magnetic order and a highly anisotropic three-dimensional lattice motion characterized by a- and b-axis expansion and c-axis contraction. The resulting increase of the FePt lattice tetragonality, the key quantity determining the energy barrier between opposite FePt magnetization orientations, persists for tens of picoseconds. These results suggest a novel approach to laser-assisted magnetic switching in future data storage applications.Comment: 12 pages, 4 figure

    Zur Ätiologie des Blasensprungs

    Full text link

    Efficiency of Various Therapeutic Concepts in Genital Mycoses

    Full text link

    Glucosenachweis im Urin als Screening-Test für Harnweginfektionen

    Full text link
    corecore