849 research outputs found

    On the quantum dynamics of non-commutative systems

    Get PDF
    This is a review paper concerned with the global consistency of the quantum dynamics of non-commutative systems. Our point of departure is the theory of constrained systems, since it provides a unified description of the classical and quantum dynamics for the models under investigation. We then elaborate on recently reported results concerned with the sufficient conditions for the existence of the Born series and unitarity and turn, afterwards, into analyzing the functional quantization of non-commutative systems. The compatibility between the operator and the functional approaches is established in full generality. The intricacies arising in connection with the explicit computation of path integrals, for the systems under scrutiny, is illustrated by presenting the detailed calculation of the Feynman kernel for the non-commutative two dimensional harmonic oscillator.Comment: 19 pages, title changed, version to be published in Brazilian Journal of Physic

    The three-dimensional noncommutative Gross-Neveu model

    Get PDF
    This work is dedicated to the study of the noncommutative Gross-Neveu model. As it is known, in the canonical Weyl-Moyal approach the model is inconsistent, basically due to the separation of the amplitudes into planar and nonplanar parts. We prove that if instead a coherent basis representation is used, the model becomes renormalizable and free of the aforementioned difficulty. We also show that, although the coherent states procedure breaks Lorentz symmetry in odd dimensions, in the Gross-Neveu model this breaking can be kept under control by assuming the noncommutativity parameters to be small enough. We also make some remarks on some ordering prescriptions used in the literature.Comment: 10 pages, IOP article style; v3: revised version, accepted for publication in J. Phys.

    Exact Renormalization of Massless QED2

    Full text link
    We perform the exact renormalization of two-dimensional massless gauge theories. Using these exact results we discuss the cluster property and confinement in both the anomalous and chiral Schwinger models.Comment: 14 pages, no figures, introduction and conclusions modifie

    Attractive Forces Between Electrons in QED3_{3}

    Get PDF
    Vacuum polarization effects are non-perturbatively incorporated into the photon propagator to eliminate the severe infrared problems characteristic of QED3_3. The theory is thus rephrased in terms of a massive vector boson whose mass is e2/(8π)e^2/(8\pi). Subsequently, it is shown that electron-electron bound states are possible in QED3_3.Comment: revtex, 10 pages and four figures, IFUSP/P-98

    The coupling of fermions to the three-dimensional noncommutative CPN−1CP^{N-1} model: minimal and supersymmetric extensions

    Get PDF
    We consider the coupling of fermions to the three-dimensional noncommutative CPN−1CP^{N-1} model. In the case of minimal coupling, although the infrared behavior of the gauge sector is improved, there are dangerous (quadratic) infrared divergences in the corrections to the two point vertex function of the scalar field. However, using superfield techniques we prove that the supersymmetric version of this model with ``antisymmetrized'' coupling of the Lagrange multiplier field is renormalizable up to the first order in 1N\frac{1}{N}. The auxiliary spinor gauge field acquires a nontrivial (nonlocal) dynamics with a generation of Maxwell and Chern-Simons noncommutative terms in the effective action. Up to the 1/N order all divergences are only logarithimic so that the model is free from nonintegrable infrared singularities.Comment: Minor corrections in the text and modifications in the list of reference

    Chiral Bosons Through Linear Constraints

    Get PDF
    We study in detail the quantization of a model which apparently describes chiral bosons. The model is based on the idea that the chiral condition could be implemented through a linear constraint. We show that the space of states is of indefinite metric. We cure this disease by introducing ghost fields in such a way that a BRST symmetry is generated. A quartet algebra is seen to emerge. The quartet mechanism, then, forces all physical states, but the vacuum, to have zero norm.Comment: 9 page

    Duality Symmetry in the Schwarz-Sen Model

    Full text link
    The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator QQ turns out to be local, gauge invariant and metric independent. Furthermore, QQ commutes with all the conformal group generators. We also show that QQ is equivalent to the non---local duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin--Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation lead us to the Schwarz--Sen formulation. The partition functions are shown to be the same which implies the quantum equivalence of the two approaches.Comment: 10 pages, latex, small changes, final version to appear in Phys. Rev.

    Superfield covariant analysis of the divergence structure of noncommutative supersymmetric QED4_4

    Full text link
    Commutative supersymmetric Yang-Mills is known to be renormalizable for N=1,2{\cal N} = 1, 2, while finite for N=4{\cal N} = 4. However, in the noncommutative version of the model (NCSQED4_4) the UV/IR mechanism gives rise to infrared divergences which may spoil the perturbative expansion. In this work we pursue the study of the consistency of NCSQED4_4 by working systematically within the covariant superfield formulation. In the Landau gauge, it has already been shown for N=1{\cal N} = 1 that the gauge field two-point function is free of harmful UV/IR infrared singularities, in the one-loop approximation. Here we show that this result holds without restrictions on the number of allowed supersymmetries and for any arbitrary covariant gauge. We also investigate the divergence structure of the gauge field three-point function in the one-loop approximation. It is first proved that the cancellation of the leading UV/IR infrared divergences is a gauge invariant statement. Surprisingly, we have also found that there exist subleading harmful UV/IR infrared singularities whose cancellation only takes place in a particular covariant gauge. Thus, we conclude that these last mentioned singularities are in the gauge sector and, therefore, do not jeopardize the perturbative expansion and/or the renormalization of the theory.Comment: 36 pages, 11 figures. Minor correction

    The noncommutative degenerate electron gas

    Full text link
    The quantum dynamics of nonrelativistic single particle systems involving noncommutative coordinates, usually referred to as noncommutative quantum mechanics, has lately been the object of several investigations. In this note we pursue these studies for the case of multi-particle systems. We use as a prototype the degenerate electron gas whose dynamics is well known in the commutative limit. Our central aim here is to understand qualitatively, rather than quantitatively, the main modifications induced by the presence of noncommutative coordinates. We shall first see that the noncommutativity modifies the exchange correlation energy while preserving the electric neutrality of the model. By employing time-independent perturbation theory together with the Seiberg-Witten map we show, afterwards, that the ionization potential is modified by the noncommutativity. It also turns out that the noncommutative parameter acts as a reference temperature. Hence, the noncommutativity lifts the degeneracy of the zero temperature electron gas.Comment: 11 pages, to appear in J. Phys. A: Math. Ge
    • 

    corecore