4,110 research outputs found
Distance measures to compare real and ideal quantum processes
With growing success in experimental implementations it is critical to
identify a "gold standard" for quantum information processing, a single measure
of distance that can be used to compare and contrast different experiments. We
enumerate a set of criteria such a distance measure must satisfy to be both
experimentally and theoretically meaningful. We then assess a wide range of
possible measures against these criteria, before making a recommendation as to
the best measures to use in characterizing quantum information processing.Comment: 15 pages; this version in line with published versio
Improving the entanglement transfer from continuous variable systems to localized qubits using non Gaussian states
We investigate the entanglement transfer from a bipartite continuous-variable
(CV) system to a pair of localized qubits assuming that each CV mode couples to
one qubit via the off-resonance Jaynes-Cummings interaction with different
interaction times for the two subsystems. First, we consider the case of the CV
system prepared in a Bell-like superposition and investigate the conditions for
maximum entanglement transfer. Then we analyze the general case of two-mode CV
states that can be represented by a Schmidt decomposition in the Fock number
basis. This class includes both Gaussian and non Gaussian CV states, as for
example twin-beam (TWB) and pair-coherent (TMC, also known as two-mode-coher
ent) states respectively. Under resonance conditions, equal interaction times
for both qubits and different initial preparations, we find that the
entanglement transfer is more efficient for TMC than for TWB states. In the
perspective of applications such as in cavity QED or with superconducting
qubits, we analyze in details the effects of off-resonance interactions
(detuning) and different interaction times for the two qubits, and discuss
conditions to preserve the entanglement transfer.Comment: revised version, 11 pages, 7 figures (few of them low-res
Quantum computation with optical coherent states
We show that quantum computation circuits using coherent states as the
logical qubits can be constructed from simple linear networks, conditional
photon measurements and "small" coherent superposition resource states
The Influence of Spatial Resolution on Nonlinear Force-Free Modeling
The nonlinear force-free field (NLFFF) model is often used to describe the
solar coronal magnetic field, however a series of earlier studies revealed
difficulties in the numerical solution of the model in application to
photospheric boundary data. We investigate the sensitivity of the modeling to
the spatial resolution of the boundary data, by applying multiple codes that
numerically solve the NLFFF model to a sequence of vector magnetogram data at
different resolutions, prepared from a single Hinode/SOT-SP scan of NOAA Active
Region 10978 on 2007 December 13. We analyze the resulting energies and
relative magnetic helicities, employ a Helmholtz decomposition to characterize
divergence errors, and quantify changes made by the codes to the vector
magnetogram boundary data in order to be compatible with the force-free model.
This study shows that NLFFF modeling results depend quantitatively on the
spatial resolution of the input boundary data, and that using more highly
resolved boundary data yields more self-consistent results. The free energies
of the resulting solutions generally trend higher with increasing resolution,
while relative magnetic helicity values vary significantly between resolutions
for all methods. All methods require changing the horizontal components, and
for some methods also the vertical components, of the vector magnetogram
boundary field in excess of nominal uncertainties in the data. The solutions
produced by the various methods are significantly different at each resolution
level. We continue to recommend verifying agreement between the modeled field
lines and corresponding coronal loop images before any NLFFF model is used in a
scientific setting.Comment: Accepted to ApJ; comments/corrections to this article are welcome via
e-mail, even after publicatio
Outdoor learning spaces: the case of forest school
© 2017 The Author. Area published by John Wiley & Sons Ltd on behalf of Royal Geographical Society (with the Institute of British Geographers). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.This paper contributes to the growing body of research concerning use of outdoor spaces by educators, and the increased use of informal and outdoor learning spaces when teaching primary school children. The research takes the example of forest school, a form of regular and repeated outdoor learning increasingly common in primary schools. This research focuses on how the learning space at forest school shapes the experience of children and forest school leaders as they engage in learning outside the classroom. The learning space is considered as a physical space, and also in a more metaphorical way as a space where different behaviours are permitted, and a space set apart from the national curriculum. Through semi-structured interviews with members of the community of practice of forest school leaders, the paper seeks to determine the significance of being outdoors on the forest school experience. How does this learning space differ from the classroom environment? What aspects of the forest school learning space support pupils’ experiences? How does the outdoor learning space affect teaching, and the dynamics of learning while at forest school? The research shows that the outdoor space provides new opportunities for children and teachers to interact and learn, and revealed how forest school leaders and children co-create a learning environment in which the boundaries between classroom and outdoor learning, teacher and pupil, are renegotiated to stimulate teaching and learning. Forest school practitioners see forest school as a separate learning space that is removed from the physical constraints of the classroom and pedagogical constraints of the national curriculum to provide a more flexible and responsive learning environment.Peer reviewe
Understanding the impact of interventions to prevent antimicrobial resistant infections in the long-term care facility; a review and practical guide to mathematical modelling
(1) To systematically search for all dynamic mathematical models of infectious disease transmission in long-term care facilities (LTCFs); (2) to critically evaluate models of interventions against antimicrobial resistance (AMR) in this setting; and (3) to develop a checklist for hospital epidemiologists and policy makers by which to distinguish good quality models of AMR in LTCFs.
The CINAHL, EMBASE, Global Health, MEDLINE, and Scopus databases were systematically searched for studies of dynamic mathematical models set in LTCFs. Models of interventions targeting methicillin-resistant Staphylococcus aureus in LTCFs were critically assessed. Using this analysis, we developed a checklist for good quality mathematical models of AMR in LTCFs.
Overall, 18 papers described mathematical models that characterized the spread of infectious diseases in LTCFs, but no models of AMR in gram-negative bacteria in this setting were described. Future models of AMR in LTCFs require a more robust methodology (ie, formal model fitting to data and validation), greater transparency regarding model assumptions, setting-specific data, realistic and current setting-specific parameters, and inclusion of movement dynamics between LTCFs and hospitals.
Mathematical models of AMR in gram-negative bacteria in the LTCF setting, where these bacteria are increasingly becoming prevalent, are needed to help guide infection prevention and control. Improvements are required to develop outputs of sufficient quality to help guide interventions and policy in the future. We suggest a checklist of criteria to be used as a practical guide to determine whether a model is robust enough to test policy
Quantum metrology at the Heisenberg limit with ion traps
Sub-Planck phase-space structures in the Wigner function of the motional
degree of freedom of a trapped ion can be used to perform weak force
measurements with Heisenberg-limited sensitivity. We propose methods to
engineer the Hamiltonian of the trapped ion to generate states with such small
scale structures, and we show how to use them in quantum metrology
applications.Comment: 10 pages, 6 figure
- …
