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Distance measures to compare real and ideal quantum processes

Alexei Gilchrist* Nathan K. Langford;" and Michael A. Nielseh*
centre for Quantum Computer Technology and Department of Physics, The University of Queensland, Brisbane, Queensland 4072,
Australia
2school of Physical Sciences and School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane,
Queensland 4072, Australia
(Received 26 August 2004; published 13 June 2005

With growing success in experimental implementations it is critical to identify a “gold standard” for quan-
tum information processing, a single measure of distance that can be used to compare and contrast different
experiments. We enumerate a set of criteria that such a distance measure must satisfy to be both experimentally
and theoretically meaningful. We then assess a wide range of possible measures against these criteria, before
making a recommendation as to the best measures to use in characterizing quantum information processing.
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[. INTRODUCTION merit that is standardized, theoretically well motivated and
) ) _ _ experimentally practical would be a considerable step for-
Many real-world imperfections arise when experimentallyyard. Parenthetically, we note that such a measure would
performing a quantum information processing task. Thesglso be of great use in concretely connecting real experi-
may arise either in the creation or measurement of a quantuments to results such as the fault-tolerance threshold for
state, or in the manipulation of the state via some quanturguantum computatiof8].
process. It is important to quantitatively measure and char- The purpose of this paper is to comprehensively address
acterize these imperfections in a way that is theoreticallthe problem of developing such error measures. There is a
meaningful and experimentally practical. sizeable previous literature on this subject, but we believe
How can this be done? Quantum states can be completetat there has been a consistent gap between work motivated
determined using quantum state tomography] and com-  primarily by theoretical considerations, and work constrained
pared using a variety of well-known measuf8& Quantum  py experimental realities. Our paper aims to address both
processes can be measured using an analogous proceduigoretical and experimental desiderata.
called quantum process tomograpf3-5]. However, the The key to our work is to introduce a list of six simple,
problem of developing quantitative measures to compare reghysically motivated criteria that should be satisfied by any
and idealized quantum processes has not been comprehgjbod measure of distance between quantum processes. These
sively addressed. criteria enable us to eliminate many approaches to the defi-
Ideally there would be a single good measure, a “goldhition of an error measure that priori appear highly plau-
standard”[6,7], enabling sensible comparison of different gjple.
experimental implementations of quantum information pro-  The criteria are as follows. SuppoAds a candidate mea-
cessing, and agreed upon by experimentalists and theorisgire of the distance between two quantum processes. Such
alike. We will refer to candidates for such a gold standard aprocesses are described by maps between input and output
“distance measures” for quantum processes, or as “errqjuantum states, e.gy,=E(pin), Where the mag is known
_mea;ures” when we want to stress the comparison of real arng aquantum operatiori3,9]. Physically, A(€,F) may be
idealized processes. thought of in two ways, as a measure of error in quantum
Such an error measure would be extremely useful bothhiormation processing when one wants to do the ideal pro-
when comparing experiments with the theoretical ideal, angess 7 but doese instead, or of distinguishability between
in comparing different experiments that attempt to performine two processesand.F. We believe that any such measure
the same task. Existing experiments in quantum informationy st satisfy the following six properties, motivated by both
processing have typically been assessed on a rathdroc physical and mathematical concerns.
basis. For example, some implementations of quantum logic (1) Metric: A should be a metric. This requires three
gates have relied on demonstrating that those gates act in “E)‘?operties,(i) A(E,F)=0 with A(E,F)=0 if and only if £
correct way on computational basis stafies., verifying the =F (i) symmetry,A(E,F)=A(F,€): and (i) the triangle
truth table of the gajeand a few superposition states. SUCh'nequaIity AE,Q)<AE, F)+A(F,G).
demonstrations are important, but it is clear that a figure of 2 Ea’sy to'calculate’it should’be possible to evaluate
in a direct manner.
(3) Easy to measurethere should be a clear and achiev-
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resents the identity operation on an additional quantum sysamples of this line of development inclufi2—17, and ref-
tem. Physically, this means that unrelated ancillary quantunerences therein. With the exception of REE7] this work
systems do not affect the value Af differs from ours in that it is focused primarily on the prob-

(6) Chaining: A(E,0&1, FooFp) <A(E1, Fp)+A(E,, Fy). lem of teleportation. Referendd7] has a more general fo-
Thus, for a process composed of many smaller steps, theus, but is not primarily concerned with the development of
total error will be less than the sum of the errors in theerror measures, but rather with the question of when quan-
individual steps. tum information processing can be modeled classically.

The chaining and stability criteria are key properties for More mathematical investigations of error measures have
estimating the error in a complex quantum information pro-also been mounted, especially in the context of quantum
cessing task. Because quantum information processing taskemmunication and fault-tolerant quantum computation. Ex-
are typically broken down into a sequence of simpler com-amples of this work includg10,18—-26, and references
ponent operations, a conservative bound on the total errdherein. This work(often embedded in some larger investi-
can be found by simply analyzing the individual compo- gation typically focuses on one or a few measures of spe-
nents. This is critical for applications such as quantum comeific interest for the problem at hand. These papers thus dif-
putation, where full process tomography onragubit com-  fer from our work in that they do not attempt a
putation requires exponentially many measurements, and i@mprehensive survey of possible error measures against
thus infeasible. Chaining and stability enable one to insteadome set of abstract criteria; nor, typically, do they address
benchmark the constituent processes involved in the compexperimental criteria such as ease of measurement. Nonethe-
tation, which can then be used to infer that the entire comiess, while this prior work is different in character from ours,
putation is robust. it has greatly informed our point of view, and we will have

Many other properties follow from these six criteria. For occasion to cite it on specific points throughout this paper. Of
example, from the metric and chaining criteria we see thaparticular relevance is Ref10], which introduced one of the
A(Re&E,R-F)<A(E,F), where R is any quantum opera- key measures we use, the stabilized process distanc®, or
tion. This corresponds to the requirement that postdistance(referred to as the diamond norm in REEQ]), and
processing byR cannotincreasethe distinguishability of emphasized some of the important properties satisfied by that
two processeg and F. Another elementary consequence of measure.

the metric and chaining criteria isnitary invariance i.e., Structure of the paperSecs. Il and Ill summarize back-
AUEV U FoV)=A(E,F), whereld and) are unitary op- ground material on quantum operations and distance mea-
erations. sures for quantum states.

For both theoreticians and experimentalists, there are Section IV is the core of the paper, comprehensively sur-
strong motivations to find a gold standard satisfying these/eying possible approaches to the definition of error mea-
criteria—the need for a physically sensible way of evaluatingsures. Our strategy is to cast a wide net, considering many
the performance of a quantum process, and the need to cordifferent possible approaches to the definition of a distance
pare the success of a theoretical model to the operation of @easure, and then to use our list of criteria to eliminate as
real, experimental system. For the experimentalist, howevemany approaches as possible. This means a certain amount
there is also another important consideration. That is thef tedium as we propose and then reject certaipriori
need fordiagnostic measurewhich can be used to build plausible candidate error measures. The benefit of going
insight into the source of imperfections in experimentalthrough this process of elimination is considerable, however.
implementations. Diagnostic measures may not necessarilyirst, it gives us confidence that the few measures we iden-
be good candidates for our sought-after gold standard—thetjfy as particularly promising should be preferred over all
may falil to satisfy one or more of our criteria—but they still other measures. Indeed, we quickly eliminate all but four of
may be extremely useful in the experimental context. Thusthe measures we define as follows: tlsaniolkowski process
some of the measures we discard as unsuitable for use adidelity (J fidelity), the Jamiolkowski process distanéé dis-
gold standard may still be useful as diagnostic measuresance, thestabilized process fidelit§s fidelity), and thesta-
Furthermore, it is not difficult to construct other examples ofbilized process distancéS distance. Second, in several in-
useful diagnostic measures which are different to any constances we show that error measures proposed previously in
sidered in this paper. The detailed investigation of such dithe literature(in one case, by one of the authors of this pa-
agnostic measures is, however, beyond the scope of thgen should be rejected as inadequate.
present paper. Section V applies the four promising measures identified

Prior work: The principal contribution of our paper is to in Sec. IV to the concrete problem of quantum computation,
comprehensively evaluate many plausible error measures feshowing that each measure has a useful operational interpre-
guantum information processing, within the broad frame-tation in terms of the success or failure of a quantum com-
work of the criteria we have identified. So far as we areputation.
aware, none of the prior work has surveyed and compared Section VI concludes the paper with a summary of our
error measures against such a broad array of theoretical amesults, and the identification of th® distance and thé&
experimental concerns. fidelity as the two measures whose properties make them the

Error measures for quantum teleportation have receivethost attractive candidates for use as a gold standard in quan-
particular attention in the prior literature, perhaps spurred byum information processing. We do not make a final recom-
controversy over which experiments should be regarded amendation as to which of these two measures should be used,
definitively demonstrating the teleportation eff¢dtl]. Ex-  since they have extremely similar strengths and weaknesses.
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However, we do discuss and make definite recommendatiord$j)} is some orthonormal basis set. The ndap p; is invert-
regarding the reporting of quantum information processingble, that is, knowledge of, is equivalent to knowledge af
experiments. Furthermore, we sketch future research dire¢32]. This isomorphism thus allows us to treat quantum op-
tions which may ameliorate some of the weaknesses of ongrations using the same tools as are ordinarily used to treat
or both measures, and which may therefore make it possiblguantum states. For later use we note the useful property
to definitively choose a single measure as a gold standard.pg, »=p:® p .
The statep; and the process matrjke are closely related.
A direct calculation shows that if one chooses the operator
basis set§A}={|m)(n[}, then x.=dp, as matrices. Thus we
Quantum operations describe the most general physicahall refer to bothy, andp; as the process matrix, and treat
processes that may occur in a quantum sydt@jnincluding  them interchangeably. This is very convenientpass easy
unitary evolution, measurement, noise, and decoherencé work with mathematically, using the expression E8),
Any quantum operation may be given tbperator-sum rep-  while the elements of have an obvious physical signifi-

II. DESCRIBING QUANTUM PROCESSES

resentationrelating inputp;, and outputp,,, States, cance, expressed by E@).
: We conclude this section with a comment on our nota-
Pout= E(pin) :2 EipinEj (1) tional conventions. We often use notation liketo denote
i

either a pure stat@)) or the corresponding density matrix

where the operator; are known apperation elementand  |#)(¥l, with the meaning to be determined from context.
obey the condition thak;EE;<1 [27]. Note that the opera- Thus, for example, we may writ$=a|0)+A|1) to indicate a
tion elementgE;} completely describe the effect of the pro- pure state of a single qubit, while also writiggy) to indi-
cess. We will mostly be concerned with the case of tracecate a quantum operati¢hacting on the density matrix cor-
preserving operations, for whichE/E;=1. Physically, this ~ responding to that pure state.

corresponds to the requirement tltatepresents a physical

process without post-selectig@8]. Many of our results ex-

tend easily to the case of non-trace-preserving operations, Ill. DISTANCE MEASURES FOR QUANTUM STATES

but to ease the exposition we assume processes are trace-A natural starting place for an attempt to define a measure

preserving unless otherwise noted. f distance for quantum processes is to consider measures of
The operator-sum representation has the drawback that? q P

is not unique, in the sense that there is a freedom in th istance for qgtan:]um f‘i}ati.‘?: '(Ij’h;ahquangqrr: mformgtltcr)]n sei-
chiceofcperaton lemenfs) T s nconvenient f e (0C5 TN 105 Kerted e Seneei e
are trying to compare two processes. To alleviate this, let St o d)i/stan?:e measu%e fopr sta{6§]pgn d these two measures
fix a basis{A;} for the space of operators, choosing for CON" il serve as the basis for our Ié\ter definitions of distance
venience a basis orthonormal under the Hilbert-Schmidt in- . X . .
ner product, i.e., (A;Ak)zéjk [29]. We can use this basis to measures for quantum operations. In keeping with the aims

d th h | B=S a A q i of the paper, we do not make a choice between the trace
expan € operation €lements;=2mdjmAm and rewnte  gistance and the fidelity at the outset. Instead, our preference

Eq. (D), is to develop distance measures for quantum operations
- t based orboth the trace distance and the fidelity, and then
&) % XemrfAmd A @ assess them using the criteria discussed in the introduction.

. We now briefly review the basic properties of the trace dis-
Where(Xg)mnEEJajmajn are the elements of therocess ma- tance and the fidelity.
trix, xc. Equation(2) tells us that the process matrix com-  The trace distanceThe trace distancebetween density
pletely describes the action of the quantum process. The biﬂwatriceSp and o is defined byD(p,o')E%tr“)—o', where
advantage of the process ma_trix representation. is that, unli X| = JXTX. From this definition it follows that the trace dis-
the operator-sum representation, once the _t{a\?}ss chosen  tance is a genuine metric on quantum states, withDo< 1.
the process matrix can be shown to be unique to the proceshe trace distance also has many other attractive properties
[30J; i.e., it depends only of, not on the particular choice of - that make it a particularly good measure of distance between
operation elementgE;}. We will not give an explicit proof of  guantum states. We now briefly describe three of these.
this fact here, but note that this result follows easily from the First, the trace distance has a compelling physical inter-
discussion below. . pretation as a measure of state distinguishability. Suppose
. The proceS'S matrix gives a convenient way of representA]ice prepares a quantum System in the STﬁnWlth prob_
ing the operatiort. A closely related but more abstract rep- ability % and in the stater with probability%. She gives the
resentation is provided by th@&amiolkowski isomorphism system to Bob, who performs a POVM measuremiit
[31], which relates a quantum operatifto a quantum state, {5 distinguish the two states. It can be shown that Bob’s
Pe probability of correctly identifying which state Alice pre-

pe =T ® EN(| DYDY, 3) pared isl/2+D(p,o)/2. That IS,D('p,O') can be interpreted,

_ up to the factor 1/2, as the optimhlas in favor of Bob
where |®)=3[j)[j)/Vd is a maximally entangled state of correctly determining which of the two states was prepared.
the (d-dimensional system with another copy of itself, and This physical interpretation follows from the identity
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D(p,0)=max tr{E(p—0)] [34], where the maximum is C(p,0)=1-F(p,o). The only difficult step in proving this
over all positive operatorg satisfyinge<|. is a metric is the proof of the triangle inequal{t$8,39.

Second, the trace distance possesses cthractivity In later sections our discussion will sometimes focus on
property[35], that is,D(E(p),E(0)) <D(p,o) whenever is  the fidelity, and sometimes on metrics derived from the fi-
a trace-preserving quantum operation. This statement exelity. We will say that a metridF(p, o) on state space is a
presses the physical fact that a quantum process acting ditlelity-basedmetric if it is a monotonically decreasing func-
two quantum states cannot increase their distinguishabilitytion of the fidelity F(p, o). Obviously the angle, the Bures
Contractivity follows from the physical interpretation of metric andC(-, -) are all fidelity-based metrics. It is often the
D(p, o) described above. case that the specific details of the metric used are not im-

Third, the trace distance doubly convexi.e., if p; are  portant, and whenever possible we state results using the
probabilities therD(Z;pjp;,2;pjo;) <Zp;D(p;j,0y). This in-  fidelity as a single unifying concept. However, sometimes it
equality can be physically interpreted as the statement thatill prove advantageous to use the fidelity-based metrics di-
the distinguishability between the statEg;p; and Z;p;o;, rectly. In particular, they have the advantage of satisfying the
wherej is not known, can never be greater than the averag&iangle inequality, which turns out to be useful proving the
distinguishability whenj is known, but has been chosen at chaining criterionproperty(6)].

random according to the distributiqs. Like the trace distance, the fidelity and its derived metrics
Fidelity: The fidelity between density matricgsando is ~ have many other nice properties. It can be sh¢4@l that
defined by F(&(p),E(0))=F(p,o) for any trace-preserving quantum
— operation&. We call this themonotonicityproperty of the
F(p,0) = tr(\\paVp)?. (4)  fidelity. It follows that any fidelity-based metric satisfies a
When p=y is a pure state, this reduceséy, o) = (o], gggr?ggvity property analogous to that satisfied by the trace

the overlap betweery and o.

The fidelity also has many attractive properties. It can b
shown that G=F(p,o) <1, with equality in the second in-
equality if and only ifp=0. The fidelity is thus not a metric F(Ejpjpj,Ejpjoj)”z?Ejij(pj ,o.j)1/2. This double concavity
as such, but serves rather as a generalized measure of be used to prove double convexity of certain fidelity-
overlap between two quantum states. The fidelity is als55e4 metrics. In particular, suppositg is a fidelity-based
symmetric in its inputsF(p, o) =F(a,p), a fact that is not  atic which is convex in the square root of the fidelitlye
obvious from the definition we have given, but which fol- angle, the Bures metric ar@(-, ) are all easily verified to

lows from other equivalent definitions. L have this properily then it is easy to verify thakF is doubly
There is an ambiguity in the literature in the definition of oy

fidelity that is worth commenting on here. Both the quantity  one grawback of the fidelity is that it is difficult to find a

defined above and its square root have been referred to as tBSmpelling physical interpretation. Whenand o are mixed

fidelity, and both have many appealing properfigg]. tates, no completely satisfactory interpretation of the fidelity
Nevertheless, we strongly advocate using the definition of \nown (but cf. Refs[41,42). Whenp= is a pure state

Eq. (4), despite the other definition being used in referenceg,o haveF(y,0)=(|oly), the overlap betweens and o

such as Ref[3]. As we will see in Sec. V, adopting the Physically, we might imagine is an attempt to prepare the

g/sflmtmn oftEq.(4) gives r|sgtrt]o a hme?S“”re of dlstﬁ_nce_ t3[e'pure statgp. In this case the fidelity coincides with the prob-
€en quantum processes with a pnysically competiing in eré\bility that a perfect measurement testing whether the state is
pretation in terms of therobability of successf a quantum

. . o S ¢ will succeed. It is this property of the fidelity that is used
computation. Adopting the other definition of fidelity would in Sec. V to connect our fidelity-based error measures for

make a_k?out as much sense as reporting the square root of tbﬁamum processes to the probability of success of a quantum
probability that the quantum computation succeeded. computation

Although not a metric, the fidelity can easily be turned General commentsThe fidelity is, at present, perhaps

Into a metr.lc. Two common w this are Bures somewhat more widely used in the quantum information sci-
metric, defined byB(p,0) =y2-2\F(p,0), and theangle  gce community than is the trace distance. However, we
defined by A(p, o) =arccos/F(p,o). The origin of these gpq|| see below that the trace distance and the fidelity have
metriCS can be seen |ntu|t|Ve|y by Considering the case Wheeomp|ementary advantages as a basis for deve|oping mea-
p and o are both pure states. The Bures metric is just thesyres of distance for quantum operations, and so it is useful
Euclidean distance between the two pure states, with respeg investigate both. In any case, the two measures are, as one
to the usual norm on state spg@], while the angle is, as  might expect, quite closely related. In particular, it is pos-

the name suggests, just the angle between the two stategple to show that they are related by the inequalif¢s,
with respect to the usual inner product on state space.

In addition to the angle and the Bures metric we will find R —_—
it convenient to introduce a third metric based on the fidelity. 1-\F(p,0) < D(p,0) < V1-F(p,0). (5)
This metric does not seem to have been previously recog-
nized in the literature, but arises naturally later in this papeit is not difficult to construct examples of saturation for both
in the context of quantum computation. It is defined byinequalities. Note that the second inequality is always satu-

The fidelity also satisfies a property analogous to the
Souble convexity of the trace distance. Precisely, the square
root of the fidelity is doubly concave that is,
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rated for pure states, i.eD(y,$)=\1-F(y,¢) for pure case for the trace distance and for any fidelity-based metric,

statesy and ¢. for example. The stability property fax,,, follows immedi-
ately:
IV. ERROR MEASURES FOR QUANTUM PROCESSES Aprol | OE1®F) =A(py @ pe, p1 ® pr) =A(pg, pr) =Apro €, F).

Our goal in this paper is to recommend a single error The chaining property can be proved, with some caveats
measure enabling researchers to compare the performancetefbe described below, by assuming thdt, -) is contrac-
quantum information processing experiments against the theive, i.e., A(£(p), (o)) < A(p, o), for trace-preserving opera-
oretical ideal. As the basis for such a recommendation, ifjons £. We have already seen that this is a natural physical
this section we comprehensively survey possible definitiongssumption satisfied by the trace distance and any fidelity-
of such error measures, and do a preliminary assessment gised metric.
each measure against the criteria introduced earlier in this Suppose then that is contractive with respect to trace-

paper. . o preserving operations. We claim thi,, satisfies the chain-
We take three basic approaches to defining an error megng property,

sure for processes. In Sec. IV A we investigate approaches

based on the process matrpg, In Sec. IV B we investigate Apro(E20 E1, Fp0 F1) < Ao €2, F2) + Apro €1, F1),
approaches based on theeragebehavior of a process. Fi-
nally, in Sec. IV C we investigate approaches based on th
worst-casebehavior of a process. In each case we investigat
measures based on both the trace distance and the fideli
We will describe connections between the various measure
and identify four measures of particular merit. The propertie
of these four measures will be discussed in more detail in th
next section.

Nomenclaturein the following treatment we shall use the
unadorned symboh to mean a metric between states. Our
approach is to use state-based metrics to form metrics b
neen processes, and these uil e b 1epeSEIA  usul erest

; e . . . . .
process metric based on the average over input states. Whe The proof of chaining begins by applying the triangle in-

) o . . dGuality to obtain
we need to specialize to a specific state metric we will use a8 y

rovided F; is doubly stochastici.e., F; is trace preserving

nd satisfiesF;(1)=I; this assumption is used at a certain

oint in our proof of chaining. This may seem like a signifi-

ant assumption, since physical processes such as relaxation
1 a finite temperature are not doubly stochastic. However, in

uantum information science we are typically interested in

e case whertF; and.F, are ideal unitary processes, and we
are usingA,, to compare the composition of these two ideal
processes to the experimentally realized proégss;. Since
unitary processes are automatically doubly stochastic, it fol-
fows that chaining holds in this case, which is the case of

superscript with the symbol representing that meéc B, Apro(E2° E1,F2° F1) = Mpe s, Pr o) (7)
C, andD from Sec. ll), or use that symbol directly with a
subscript for the method, e.@\2 .= D, is theprocessmet- <Apeye, Pepr,) + Mpesr, Prer,)- (8

ric based on the average trace distance. The chief departure

from these conventions will be due to the fidelity, which is Then note the easily verified identitye.=(F' ® &)(P),

not a metric. We will use the notatiakl to mean anymetric ~ where® is the maximally entangled state defined earlier, we
derived from the fidelite.g.,A, B, andC) and the symboF define]-‘T(p)EEijTpF;, andF; are the operation elements
with a subscript to mean a process measure based on fidelifyr 7 [cf. Eq. (1)]. Applying this identity to both density

for example,F . is the average fidelity. matrices in the second term on the right-hand side of(8q.
gives
A. Error measures based on the process matrix Apro(E0 E1,F 20 Fy)

SupposeA(p, o) is any metric on the space of quantum <Apeoe.rpe 0}')+A((]:I® 52)(@),(7_?@ F)(®)).
states. A natural approach to defining a measiyg of the R
distance between two quantum processes is 9)

Aprol€,F) = Alpe,ps).- (6) The dogble stochasticity Qﬁ implies that]—'I is a trace-
preserving quantum operation. We can therefore apply con-

Defining Ay, in this way automatically gived,, the metric  tractivity to both the first and the second terms on the right-
property. ProvidedA(-, -) is easy to calculated,, is also  hand side of Eq(9), giving the desired result.
easy to calculate. Furthermore, sirftean be experimentally Only one property oA, remains in question, and that is
determined using quantum process tomography, it followsvhether or not it has a good physical interpretation. We will
that Ay, can be experimentally measured, at least in prinsee in Sec. V thaD, and F,, can both be related in a
ciple. natural way to the average probability with which a quantum

What about the other properties? The properties of stabileomputation fails or succeeds, providing a good physical in-
ity and chaining can be obtained by making some naturaferpretation for these quantities.
extra assumptions about the state mefxjcwhich we now Although A, may be calculated easily in principle for
describe. Suppose first that the metkiés stablein the sense  both the trace distance and fidelity-based approaches, the
that A(p® 7,0® 7)=A(p,0). This is easily seen to be the fidelity-based measures have some substantial advantages.
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The reason is that, so far as we are aware, experimentally For example, consider amqubit processl. Suppose we
determining D, requires doing full process tomography, select thel; to range over the-fold tensor products of Pauli
which for ad-dimensional quantum system requires the esmatrices (including the identity matrix Suppose further-
timation ofd*-d? observable averages. By contrast, whén more that for each qubit we select the input states from the
is a unitary operation it turns out that the fidelfy,,(£,U) set{l,1+X,I+Y,I+Z} (where X, Y, Z are the usual Pauli
(and related error measujesan be determined based upon operator so that we choosg, from the set of all possible
the estimation of at mostd? observable averages, and in tensor products of the single qubit input states. Now, choos-
particular, d> observable averages for qubits. This makesing o;=2,a,UUU", we see that thay will always be real,
Foro(€,U) and related error measures substantially easier tand since théJ, are Hermitian then the; are also Hermit-
determine experimentally the,,.. The key to proving this ian. Thus Eq(12) tells us that we need to estimate oy

is the observatiofi44] observable averages to evaluég, for any U, much fewer
than thed*-d? observable averages necessary to do full pro-
cess tomography on qubits.

It is an interesting problem deserving further exploration
to find the minimum number of measurements required to
where the{U;} are a basis of unitary operators orthogonalestimater,,, when there are constraints on what input states
under the Hilbert-Schmidt inner product, satisfying and observables are available. For instance, it would be use-
tr(UjTUk)zdéjk. Up to scaling we saw an example of such aful to know the optimal number for the case where we are
set in Sec. |l, then-qubit tensor products formed from the restricted to separable inputs and product observables, i.e.,
Pauli matrices and the identity matrix. E(LO) does not  inputs and observables that can be given direct local imple-
provide a direct way of estimating,, But suppose mentations.
we expand theU; in terms of a set ofinput states p:

U;=2iajkpx- These input states must span the entire operator B. Error measures based on the average case
space, and thus there must & of them; we will see an
explicit example below for two qubits. We also expand

1
Foro(E,U) = d—3$ trfUUUTEW))], (10)

Another natural approach for defining error measures for
quantum operations is to compare output states and average

Ui uf= . .
#}JJU mbtermsbcl)f a set ?b?servabletshm, UltJ.lU E'bJ't‘T" over all input state, where the output states can be compared
ese observablés must also span the entire operator Spaﬁging the distance measures for states described in Sec. Ill.
Substitution into Eq(10) gives We define

1
Ford £1U) = .2 Mg tlé(p] ay IWEEE f dYA(EW), F)), (13

whereM;=Zb;a;. This equation gives a method to evalu- where the integral is over the uniforidaa) measure on
ateF,,, choose a spanning setdfinput stategp, which can  state space.

be prepared experimentally, and a set of observables While this approach seems intuitively sensible, it turns
whose averages we can reliably measure; determine the maut that the resulting measures satisfy few of our criteria.
trix M=(M,,), whose elements depend only on known quan-The only two properties these measures appear to satisfy in
tities (py, o}, and the idealized operatidd), not on the un-  general, for an arbitrary state metrg are the metric and
known £. The nonzero matrix elements M will determine  chaining criteria, both of which follow immediately from the
which observable averages need to be estimated for calculawretric property ofA.

ing Fpro(€,U). In general d* observable averages will need  The average-based metrics are less successful in meeting
to be estimated. However, suppose we choose some fixed 8¢ other criteria. Even whed is easy to calculate, it is not

of py, and then define;=3,a,UU,UT [45]. In this case itis  Obvious that the integral in E¢13) will have a simple form
easily verified that Eq(11) simplifies to that enables easy calculation Af,. This, in turn, means

that A, may not be so easy to determine experimentally. So
1 far as we are aware, no simple expressions are known for
Forol€,U) = @Ek" tlowelpd], (12) Aye for any of the metrics we have discussed.

It is not surprising that the physical interpretations of
which only requires betweed? and 2> measurements. The these metrics rely heavily on the possible interpretations of
drawback is that in this method we are not free to choose ththe corresponding state metrics as discussed in Sec. lll. The
oy, they are determined by and thep,. earlier discussion of the trace distance, for example, follows

In practical situations, certain input states and measureon to give a meaning foD,,. Suppose we are asked to
ments are easier to use than others. We envisage an expetlistinguish betweer€(y) and F(y) for some ¢ which is
mentalist choosing the set of input states and measuremeritgown, but has been chosen uniformly at random. On aver-
according to convenience and using the prescription above tage, the optimal probability of successfully distinguishing
calculate which combinations are necessary. This in generéihe two processes will bel/2+D,d€,F)/2. Thus,
will be less than what is required to perform full processD,,dE,F) may be interpreted as a measure of the average
tomography. This direct method has the additional advantageias in favor of correctly distinguishing which process was
of making it easier to estimate the experimental errdfjg.  applied to a state. With regard to the fidelity-based metrics,
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however, there does not appear to be any clear physical in- C. Error measures based on the worst case
terpretation ford, . because of the lack of any clear meaning oy final approach to defining error measures is based on

for the fidelity-based metrics. o _the worst-case distance betweg) and F(i). We define
Finally, completing the checklist of criteria, our numerical

analysis shows thad,, is not stable for any of the four Anad E,F) = maxA(E(y), F(¥)), (16)
candidate state metrics we have investigated. Later in the v

paper we describe in detail a method for “stabilizing” mea-where the maximum is over all possible pure state inpfts,
sures which are not stable; we now briefly note the resultgndA is a metric on quantum states.

that are obtained when this procedure is applied in the \WhenA=AF is a fidelity-based metric, we Sef‘fnax is a
present context. The idea is to introduce an ancillary systefunction of theminimal fidelity defined by

A, and consider the quantity )
Fmin(€,7) = min F(E(), F(4)). (17
Agtap-avk, F) = lim Ay dZ © £, ® F), v
In the definition ofA,,,,, we maximize over alpure state
where the limit is that of large ancilla dimension. Using theinputs. Is this maximum the sameafl physical inputs, in-
well-known result that a randomly chosen state of a composcluding mixed states, are considered? In fact, it is fairly
ite systemAQ (dimA>dim Q) has very close to maximal simple to show that this is true, and therefore that it does not
entanglement [46,47, it follows that AgapakE,F)  matter if we optimize over pure or mixed stafel9]. Sup-
=A,0(E,F), i.e., the stabilized average distance reduces t@ose A is a doubly convexmetric, as are all the metrics
the process distance considered earlier. discussed in this papecf. Sec. Il). If the maximum is
There is an alternative approach, available because thechieved at some mixed state, then we haveA, .
fidelity-based metrics are nonlinear functions of the fidelity,=A(E(p), F(p)). Expandingp=X=;p;i; as a mixture of pure
which is to create a measure based on the average fidelitystates, and applying double convexity we see that the maxi-
mum must also be attained at some pure sfaté\ similar
F. &7 = f dUF(EW), FD)). (14) ?hrgl;in;gl?:yholds foF i, based on the double concavity of
To assess the suitability of these measures, it is useful to
When F is a unitary operationJ, the average fidelity has a first note thatD,,,, has already been shown in general not to
physical interpretation that is at least plausible, as the avelbe stablg10], and similar arguments can be made to extend
age overlap betweeb|y) and £(y). It was shown in Ref. this to the fidelity-based measures. In Hé0], Aharonovet
[48] (see also Ref.19)]) thatF,,. andF, are related by the al. resolve this difficulty by constructing a variant Bfyax

equation which is stable, but which otherwise has extremely similar
properties td . We now describe how this procedure can

Foro(&,U)d + 1 be extended to define a stable versiol\gf,, for an arbitrary
Fad€,U) = d+1 (15 state metricA, and defer for the moment discussion of the

other criteria.
whered is the dimension of the quantum system, and we are Suppose the original syste@ on which& and F act has
restricting ourselves to the case whéfds a unitary opera- state space dimensiath It will be convenient to use sub-
tion. This relationship make§,,d&,U) easy to calculate Scripts to indicate the system on which operations(ed.,
[19,20 and also easy to measure experimentally, using thé=Eq.7=Fg). We introduce a fictitiousl-dimensional an-
techniques described in the preceding sectiorFigg(£,U).  Cillary systemA, acted on by the identity operatidfy, and

AlthoughF .. has several advantagésase of calculation, define the stabilized quantifys0]
ease of measurement, and a physical interpretatiba out- =
look for the other criteria is not so good. Not onlyFg,. not Asalfo Fo) = AnalTa® EoTa® Fo). (18
a metric, it is not stable either, a fact that follows from Eq. The proof thatAgy,y, is stable under addition of systems is
(15 and the knowledge thdt, is stable. The same argu- simple and has been included in Appendix A 1. In the same
ment shows that measures analogou4,tB, andC based on  way, we can also define a stable form of the minimum fidel-
Fave Will also not be stable. We do not know of any stableity, FsadEq,Fo) =Fmin(Za® £q.Za® Fo), with the proof of
metrics that may be derived as a functionFgf, and Eq. stability following similar lines. Note that the stabilized
(15) renders any such metrics equivalent in content to funcfidelity-based metricaf,_, are functions ofF 4, in the obvi-
tions based offr,, SO the only reason to use them would be ous way(e.g. we define as usull,y, Bgiap and Cggp).
if they had better characteristics. Which of the other criteria for an error measure dagg,

To summarize the results of this section, they show thasatisfy? It is straightforward to show that,,, satisfies the
none of the average-case error measures we have defined anetric and chaining criteria. Furthermore, the stabilized
particularly attractive. However, these negative results ar¢race-distanc®g,,has an appealing physical interpretation,
vital because these approaches are all fairly natural solutioris is the worst-case bias in the probability of being able to
one might take to defining a plausible error measure. It waslistinguish(Z® &)() from (Z® F)(i), where we allow an
therefore important to consider them carefully before choosancilla of arbitrary size. We defer discussion of the physical
ing to reject them. interpretation of the fidelity-based measures until the next
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section, where we will see that both they abgd,, can be both worst-case and average-case performance for each divi-
given an elegant interpretation in the context of quantunsion.
computation. Most algorithms on classical computers are framed as
What of the remaining criteria—ease of calculation andfunction computations. We will see that our error measures
ease of measurement? Unfortunately, no powerful generalan be given particularly compelling interpretations relating
formulas for calculatingAg,, are known. Referenc€l0]  to the probability of error in a function computation. How-
gives a general formula for the distanbg,, between two ever, in the context of simulating quantum systems it is often
unitary operations, but the more interesting case of the dismore natural to consider sampling computations, where the
tance between an idealized unitary operation and a noisgoal is to reproduce the statistics obtained from a measure-
quantum process has not been solved, even for single-qubitent of the system in some specified configuration. Again,
operations. we will see that our error measures can be given good inter-
The good news is thddg,pand Fg,p, (@and thusAgiap Bsian pretations in this context, albeit somewhat more complex
andCg,y are easy to calculate numerically, because they camterpretations than for function computation.
all be reduced t@onvex optimizatioproblemg51]. For this The reason for treating the two types of computation
special class of problem, where the task is to minimize aseparately is at least partially a practical one, since both
convex function defined on a convex set, extremely efficientypes of computation arise naturally in the context of quan-
numerical techniques are available. Among many other niceum computation. However, a more fundamental reason is
properties, it is possible to show that a local minimum of athat it does not appear to be known how to reduce sampling
convex optimization problem is always a global minimum, computation to function computation. Rather remarkably,
and thus techniques such as gradient descent typically coeven when there is an efficient way @dmputinga probabil-
verge extremely rapidly, with no danger of finding false ity distribution, there does not appear to be any general way
minima. In Appendix A 2, we prove explicitly that finding to convert that into an efficient way aglamplingfrom that
Fsiapbelongs to this class of problems, and the proofigy,  distribution.
follows similar lines.
We have seen that numerical calculatiorDaf,,andFgp ) .
can easily be carried out, and this enables a two-step proce- A. Function computation
dure for experimental measurement of either quantity, pro- |n function computation, the goal of the quantum compu-
cess tomography, followed by a numerical optimization. Oftation is tocompute a functionf, exactly or with high prob-
course, finding general formulas along the linesgf(£,U)  ability of success. More precisely, the goal is to take as input
or Dy, is still a highly desirable goal. Aside from the intrin- an instancey, of the problem, and to produce a final state
sic benefit, finding general formulas would simplify the ex- of the computer that is either equal [ti@x)), or sufficiently
perimental measurement and determination of error bars fatlose that when a measurement in the computational basis is
Dstan @nd Fgap, @nd perhaps obviate the need for a full pro-performed, the outcome ix) with high probability. Grov-
cess tomography, as E(LO) did for Fy(€,U). er’s algorithm is usually cast in this way, where we want to
determine the identity of the state marked by the oracle.
Function computation in the worst casBuppose we at-
tempt to perform a quantum computation represented by an
Can we find a good physical interpretation for any of theideal operatiorF that acts on an inpyk), wherex represents
error measures that we have identified? In this section wéhe instance of the problem to be solved, e.g., a number to be
will focus on interpretations that arise within the context of factored[52]. This process succeeds in computiiig) with
guantum computation and we will find that of the error mea-an error probability of at mogtl¥, where “id” indicates that
sures we have discussed, four have particularly outstandingis is theideal worst-case error probability. Of course, in
properties Do, Fpro Dstanp @ndFgi, (NoOte that in the case  reality some nonideal operatighis performed. A good mea-
of the fidelity, it will actually be more convenient to state our sure of error in the real computation is thetual probability
results in terms of the equivalent measu@sg, and Cg,p) p. that the measured output of the computation is not equal
Assessed according to the criteria described in the introto f(x). In Appendix B 1, we show that
duction, these four measures have already been found to be

V. APPLICATION TO QUANTUM COMPUTING

: ; id
superior to all the other measures we have studied. The ad- Pe < Pe *+ Dstal &,F), (19
ditional fact that each arises naturally in the context of quan-
tum computation strongly indicates that these four measures e =< [V~ nid 4 Ceal & )2 (20)

are the most deserving of consideration as measures of error
in quantum information processing. We will return in the Which of these inequalities is better depends upon the exact
conclusion, Sec. VI, to the question of which of these fourcircumstances. For example, whgfi=0, we see that it de-
measures is the best possible measure of error. pends upon whetheDg{ &, F) is larger or smaller than
There are a variety of different ways of describing quan-Cstab(S F)?. With Eq. (5) in mind, it is not difficult to con-
tum computations, and it turns out that each of the four errovince oneself that either of these possibilities may occur.
measures arises naturally in different contexts. We will dis- Function computation in the average cagence again
cuss separately two broad divisions of quantum computatiomqur goal is to compute a functiof(x) using an approxima-
function computatiorand sampling computatiohooking at  tion £ to some ideal operatioft. However, we now look at
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the average-case error probabilfly that the measured out- obtained as the result of a quantum computation.

put of £(|x){x|) is not equal tof(x), where the average is Sampling computation in the worst casguppose we at-
taken with respect to a uniform distribution over instances tempt to perform a quantum computation represented by an
Correspondingly, we introducégd, the average-case error ideal operation that acts on an inpyk), wherex represents
probability for the idealized operatiofi. We show thatAp-  the instance of the problem to be solved. The goal is to

pendix B 2: produce a final staté(|x)(x|) which, when measured in the
—  — computational basis, gives rise to an ideal distributign
Pe=Pe * Dprol&, 7). (21) Instead, we perform the operati@h giving rise to a distri-

Unfortunately, we have been unable to develop a full naturaPUtion o on measurement outcomes. In Appenéi 3 we

analogue of Eq(20) based on the fidelity. However, we have Prove that
proved a partial analogue for when the ideal computation maxD <D..(E 23
succeeds with probability on@®=0). In this case, X (@ P = Dead€.7) @3

_ 24
Pe =< Cpro(&f) =1-F(&F). (22) max 1 - F(ay, p)J] < Cstat(&}—)z- (24)
The proof uses very similar techniques to those used to es- x
tablish Eqs(21) and(20), and is therefore omitted. Just as for function computation, which of these is the better
inequality depends upon the details of the situation under
) ) study.
B. Sampling computation Sampling computation in the average casgiven the

In sampling quantum computation, the goal issemple ~Same situation as for the worst case, we now assume that
from some ideal distributiodp,(y)}=p, on measurement Pproblem instances are chosen uniformly at random. We will
outcomesy, with X representing input data for the prob|em_ therefore use the KoImogorov distance and Bhattacharya
For instancex might represent the coupling strengths andoverlap between thgoint distributions {p(x,y);=p and
temperature of some spin glass model, with the goal being t€d(X,y)}=q to measure how welE has approximated-.
sample from the thermal distribution of configurationfor ~ Arguments analogous to that used in the worst case establish
that spin glass. This type of computation is particularly use-
ful forpsimgulating the dynamics of another quantum system. D(@.p) < Dprol€,7). (25)

Unlike Grover’s algorithm, Shor’s algorithm is usually
described as a sampling computation. The goal is not to di- 1-F(q,p) < Cprol &, F). (26)
rectly produce a factor or list of factors, but rather to produce
a distribution over measurement outcomes. By sampling
from this distribution and doing classical post-processing it V1. SUMMARY, RECOMMENDATIONS,
is possible to extract factors of some numke®f course, as AND CONCLUSION

noted in Ref[53], it is possible to modify Shor’s algorithm  \we have formulated a list of criteria that must be satisfied
to be a function computation, taking an instancand pro-  py a good measure of error in quantum information process-
ducing a list of all the factors af. o ing. These criteria provide a broad framework that can be
The desired result in sampling computation is that theysed to assess candidate error measures, incorporating both
measurement outcomeg are distributed according to the thegretical and experimental desiderata.
ideal probabilitiesp,(y), for a given problem instanoe Sup- We have used this framework to comprehensively survey
pose, however, that they are instead distributed according t§ossible approaches to the definition of an error measure,
some nonideal set aéal probabilitiesg,(y). How should we  rejecting manya priori plausible error measures as they fail
compare these two distributions? There are two widely usegb satisfy many of our criteria. Although many of these re-
classical measures enabling comparison of probability distrifected error measures are of some interest as diagnostic mea-
butionsp andq. The first is theKolmogorovor |, distance, sures, none are suitable for use gsrimary measure of the
defined by D(p,q)=Z2,|p(y)-q(y)|/2. The second is the error in a quantum information processing task.
Bhattacharya overlap defined by F(p,q)=Z2p(y)q(y). Four error measures were identified which have particular
Since these measures are in fact commutative analogues wiferit, each of which satisfies most or all of the criteria we
the trace distance and fidelity, respectively, we represeritlentified. These measures are thdistance(Jamiolkowski
them with the same symbols as their quantum analo@bes process distangethe J fidelity (Jamiolkowski process fidel-
andF). As with the trace distance, the Kolmogorov distanceity), the S distance(stabilized process distancand theS
can be given an appealing interpretation as the bias in prolidelity (stabilized process fidelitydenotedD ., Fpror Dstan
ability when trying to distinguish the distributiorsand g. and Fg,, respectively.
No similarly simple interpretation for the Bhattacharya over-  All four measures either are metri¢g the case of the
lap seems to be known, although it is related to the Kolmogprocess distancgsr give rise to a variety of associated met-
orov distance through inequalities analogous to Gg. rics (for the process fidelitigs Moreover, all of the metrics
The Kolmogorov distance and Bhattacharya overlap, tocan be shown to satisfy stability and chaining properties
gether with the quantum error measures we have introducedyhich greatly simplify the analysis of multistage quantum
can be used to relate ideal and real probability distributionsnformation processing tasks, as described in the introduc-
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tion. The main differences arise in the criteria of easy calcu- maxD(0y, py) < DgadE,U). (32
lation, measurement and sensible physical interpretation. We X
now briefly summarize these remaining properties for the ) i »
four measures. Throughout this section, we assume that tHB the first expressiop, is the worst-case error probability
goal in each case is to compare a quantum operatignan I the |Qeal computationJ. .In the second expression
ideal unitary operatiot; the results vary somewhat whén  D(Gx, P is the Kolmogorov distance between the real and
(i) J distance: There is a straightforward formula en- and we take the worst case over all problem instances
abling D, to be calculated directly from the process matrix, (V) S fidelity:Once again, no elementary formula for the
thus also allowing it to be experimentally determined usingS fidelity is known, but we have proved that the determina-
guantum process tomography. Theistance can be given an tion of Fg,p can be formulated as a convex optimization
operational interpretation as a bound on the average profiroblem, and thub.,can be efficiently determined numeri-
ability of errorp, experienced during quantum computation cally. As a resultFg., can again be determined experimen-
of a function, or as a bound on the distance between the reflly, using process tomography. As with tBalistance Fpr
and ideal joint distributions of the computer in a samplinghas an operational interpretation related to worst-case error

computation: probabilities,
Pe = P5 + Dy £.U), 27) pe=[VpZ + Caaf E V)T (39
P(0P) = Byl &0 @9 Min F(6,p,) = Feaf &,U). (34
X

In the first expressio@{;j is the average probability of error
in the ideal computation, represented ly. In the second The notation here is the same as above, with the definition
expressionD(q, p) is the Kolmogorov distance between the Csad €,U) = {1-FgdE, V).
real joint probability distributio{p(x,y)} = p on problem in- Which of these four error measures is the best? Our rec-
stancesx and measurement outcomgsand the ideal joint  ommendation is necessarily tentative, for we do not yet have
distribution{q(x,y)}=q, for a uniform distribution on prob- a complete understanding of the properties of these mea-
lem instances. sures. In particular, the discovery of simpler formulas for
(if) J fidelity: Once again, thd fidelity can be calculated calculating the measures or simpler procedures for measur-
directly from the process matrix. However, there is also ang them experimentally remain possibilities which could
simpler formula forF,,, Eq.(11), allowing easy calculation make it necessary to reconsider their relative merits.
and measurement, without the need for full process tomog- The fact that they all four measures obey the stability and
raphy. This is much more straightforward than the calculachaining criteria means that in all cases it is only necessary
tion for the J distance, and is likely to simplify the determi- to characterize the component processes in order to bound
nation of experimental errors. As for thkedistance, thel  the total error in a complex quantum information processing
fidelity can be given an operational interpretation related taask. This makes conceivable the idea of using these mea-

average error probabilities, sures for assessing processes in large-scale systems.
. One important difference between the measures is that the
Pe<1-FpoEU). (29 sdistance an&fidelity bound worst-case error probabilities,
as compared to the average-case error probabilities for which
F(A,p) = Fpro(E,U). (30) the J distance and] fidelity provide bounds. This would

seem to be a significant advantage for distance ands

In the first expression we are now restricted to ideal compufidelity, since worst-case errors are usually of more interest
tationsU which succeed perfectly, i.qE',S=O. In the second than the average case. On the other hand, given the linear
expression,F(q,p) is the Bhattacharya overlap between nature of quantum mechanics, it seems likely that in low
the real and ideal joint probability distributionp,andqg,  dimensions relatively tight ways may be found to use the
again for a uniform distribution on problem instances. ~average errors to bound the worst-case errors.

(iii) S distanceThere is no known elementary formula ~ The measure which is simplest to calculate is JHelel-
for Dy, but we have proved that calculating tBalistance  ity, which has a simple formula, and is relatively easy to
is equivalent to a convex optimization problem, which candetermine experimentally compared with the other measures.
be efficiently solved numerically, given knowledge of the Unfortunately, this measure has the weakest operational in-
process. This, in turn, enabl&k,,to be measured experi- terpretation of the four. As well as being only related to the
mentally, by performing full quantum process tomography.average-case probability of error, our expression €9)
The S distance can be simply interpreted as a bound on théoes not hold true for function computations where the ideal
worst-case error probabilitp, for a function computation, case suffers an intrinsic error. For this reason we believe that
and as a bound on the maximum distance between the redile J fidelity is of particular interest for early, proof-of-

and ideal output distributions of a sampling computation, ~principle experimental demonstrations, but that other mea-
sures with more desirable properties will eventually super-

Pe < Po + Dgiaf £,U), (31)  sede it.
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process tomography, and no elementary formula for either is o
known. However, they are easy to calculate numerically, and 1. Proof of worst-case stabilization

although full process tomography is a time-consuming task, | et £, and F, be trace-preserving quantum operations
it is becoming a standard technique in quantum informationycting on ad-dimensional systen®. We will show, follow-
experiments. ing Ref.[10], that Agaf £q, Fo) is stable under the addition

On the basis of their compelling operational interpreta- ; ' A : ro
. . . . of an arbitraryd’-dimensional systen®’, i.e, A .
tions, and other attractive theoretical and experimental prop- A Y yster s £, 7Q)
- stak{ZQ' ® gQ,ZQr ® fQ)

erties, we believe that thg distance ands fidelity are the . - :
two best error measures, and should be used a)lls the basis for 10 See this, recall the definition a5 €, 7). We in-
comparison of real quantum information processing experifroduce a fictitiousd-dimensional ancillary syster, acted
ments to the theoretical ideal. upon by the identity operatiorZ,. Then by definition

Is it possible to make a definite recommendation as reAsad€q,FQ) =AmadZa® £q, Za® Fo).
gards which of these two measures to use? At the moment, By definition of Ag.p, we see thatAg.fZg ® Eq,Zo
we know of no convincing argument to choose one over thew 7)) is equal toA,(Zg® I ® £q,Ig® Iy ® Fg), Where
other. For instance, it is straightforward to find examples off; acts as the identity on dX d’-dimensional ancillaB.
different processes where either tBdistance or th&Sfidel-  Thus, to prove stability it suffices to show that the quantity
ity give the better bound in Eqe31) and(33). Further work A . (Ts® &4, Zs® Fo) is independent of the dimension of

on the relative merits of these measures is required beforefg systens that Zs acts on, provide is at leastd dimen-
definitive choice can be made. sional.

As a consequence, at the present time we believebtitat To see this independence, lgtbe a state achieving the

measures should be reported in experiments. Note that det%’aximum iNA e Zs® £, Zs® Fo), With a Schmidt decom-
2 ; . T ma , ,
mining two measures rather than one imposes little addi sition ¢=E,-l,bj|ej>|fj>, Where|ej> are orthonormal states of

ional burden on experimentali in rmining eith . . . .
tional burden on experimentalists, since dete g eit eg and|f,—> is an orthonormal basis set f@. SinceQ is d

measure require@t presentprocess tomography to be per- . ; <
formed, and once process tomography has been performeddfmensional, the statg has at mostd Schmidt coefficients,

is straightforward to numerically calculate both measures. @nd SO we can restrict our attention to tftatlimensional
Much work remains to be done. Tasks of obvious impor-Subspace ofS spanned by the statefg) with nonzero
tance includea) obtaining closed-form formulas and simple Schmidt coefficients. We see that the maximum can be ob-
experimental measurement procedures forSliéstance and tained working only in this subspace, concluding the proof.
S fidelity, (b) finding procedures which can be used to cal-
culate experimental error bars for tBalistance and fidel- 2. Proof of convex optimization property for F gy
ity, (c) expressing the threshold condition for fault-tolerant . .
quantum computation and communication using the errop OUr 90al is to show that the problem of computing
measures we have identified, afel extending our work so Fstab Can b? reduced to the minimization Of. a convex
that it applies to quantum operations which are not tracdUnction defined on a convex set. To show this we intro-
preserving, such as those which arise naturally in certaifuce & function, denote&(pq,&o, o), where subscripts
optical proposals for quantum computatif4,55, where indicate the system on whlqh the variable is deflngd. .The
measurements and post-selection are critical elements. ~ Value of F(pq,€q,Fq) is defined to be the state fidelity
Broadening the scope, it would also be useful to develog-(Za® £Q)(#),(Za® Fo)(#)), whereA is an ancilla of at
additional diagnostic measures, which could be used experleast the same dimension & and is any purification of
mentally to understand and improve specific aspects of ag to AQ. It is easily verified that this definition is indepen-
process’s operation, while not being suitable as generadent of which purificationy of pq is used.
purpose measures of how well a process has been performed. From this definition, it can be seen that the problem of
An example of such a measure is thecess puritytr(p?), — computing Fg.fEq,Fq) is equivalent to minimizing
which can be regarded as a measure of the extent to whichfpg,€q,Fg) over all density matricepg of systemQ.
quantum operatiorf maintains the purity of the quantum Therefore, to prove that findinBgy,,is a convex optimiza-
state. Although this measure is easily seen to be deficient ition problem, we simply need to show théllpg,£q, Fo) is a
terms of the criteria developed in the introduction, and thusonvex function ofpg, which takes values in a convex set.
is not suitable as a general-purpose measure, it may be useful To do this, letp; be probabilities, and Iep‘Q be corre-
as a diagnostic measure that provides information about orgponding states of the syste@) with purifications¢; to a
specific aspect of’s performance. systemAQ. It is helpful to introduce another ancillary system
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A’ with an orthonormal basi§) in one-to-one correspon- tance and some simple algebra in the third line. The desired

dence with the index on the statpié, and we define a state result, Eq.(B1), now follows from the definition 0Dy,

|¢//>EEJ-\5'E|j>|¢//j> of the joint systemA’AQ. By observing
that|) is a purification oijpjp'Q, we see that

F(E ij{gng:}—Q> =F(Zara® EQ)(),(Tara ® Fo)(4)).
J

(A1)

We then apply the monotonicity of the fidelitgf. Sec. Il)
under decoherence in th basis, giving

F(E PJPBSQ-}'Q)
]

<F(ijljxj|®(IA®8Q)(w;),E p,-lj><j|®(IA®fQ)(¢,-)>.
J J

(A2)

Finally, applying some elementary algebra to simplify the

right-hand side, we obtain
i i

which implies thatF(pg,£q, Fq) is convex inpg, as desired.
A similar construction shows that the computatiorDf,,

is equivalent to the maximization of a concave function over
a convex set, and thus is also a convex optimization problem,
with concomitant numerical benefits. The construction is suf-

ficiently similar that we omit the details.

APPENDIX B: APPLICATION TO QUANTUM
COMPUTING

1. Function computation in the worst case

To prove the second inequality, E@2), note that

Pe =1 = F(E(X}X]),[FOXT(X)]) (B6)

=C(E(XX), [T TN (B7)
<[CEPXX, F([x)X)) + CFEPOC, [FOOXF DT,
(B8)

where the first line follows from the definition gf, and
the state fidelity, the second line follows from the definition
of the metricC(-, ), and the third line follows from the
triangle inequality forC(-, -). The proof of Eq.(B2) is com-
pleted by noting thaC(E(|x){x]) , F(|x){X|)) < Cgaf €, F) and

CE(XO [ FOONFX]) =< Voo,

2. Function computation in the average case

As in the worst casef and F are real and ideal quantum
operations that act on an inppth to compute a desired func-
tion f(x). £ succeeds with an average error probabifity
whereasF succeeds with an average error probabEB(

The first steps in the proof of E¢R21) are directly analo-
gous to the proof of Eq(19), resulting in the inequality

Be= B+ 53 DERED. AN, (B9

whered is the total number of possible inputs Recall that
Dpr £, F) =D((Z ® E)(P),(Z® F)(P)), (B10)

whereZ acts on an ancilla which is a copy of the syst€m
and.F act on, and®)==,|x)|x)/ Vd is a maximally entangled

Supposef and F are real and ideal quantum operations, state of the two systems. Now l&tf be a quantum operation

respectively, that act on an inp{¥), wherex represents a

representing measurement on the ancilla system, defined

problem instanceS succeeds in computing the desired func-similarly to the definition ofM just above. By contractivity

tion f(x) with an error probability of at mogp., whereasF
succeeds with afideal) error probability of at mospg’.
We wish to show

Pe< P + Dgd &, F), (B1)
Pe =[P + Cora €, PP (B2)

To prove the first inequalityB1), we introduce a quantum

of the trace distance,
Dprol€,F) = D(M @ E)(P),(M @ F)(P)). (B11)
Elementary algebra gives

D(M ® @), (M ® AI@) = -3 DE), ).

(B12)

operation M representing the process of measurementcompining these results, we obtain Eg1).

M(p)=Z,|lyXylply)Xyl, where the sum is over all possible
measurement outcomes Now observe that

Pe = D((M > E)([X)(X)), [ F(x)XF(x)]) (B3)

<D((M > E)(IXN(X]), (M > F)([x)(x])) + D((M ° F)(|x)
XK, [T (X)) (B4)

<D(E(XX)), F(x)X)) + p, (B5)

As already remarked we have not found a natural
average-case analogue of Eg0). However, ifﬁgzo, ie.,
our computation succeeds with probability one, then it is
possible to prove an average-case analogue. The result is

HeSCpro(gaﬂzzl_F(g,f). (B13)

The proof uses very similar techniques to those used to es-
tablish Eqs(21) and(20), and is therefore omitted.

3. Sampling computation in the worst case

where we used simple algebra in the first line, the triangle The quantum operatiofiis an imperfect attempt to repro-
inequality in the second line, and contractivity of trace dis-duce the statistics of the ideal operatidnwhich acts on an
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input [x). Measured in the computational basfs gives rise
to a distribution{p,(y)} = p, whereast gives a distribution

(oY)} =0k
The inequalities Eq923) and(24) that we want to prove

D (G, P = DM © E)(IX)(X]), (M = F)(|x)x])) (B16)

may be stated as follows: =D, Z(x)x)) (B17)
maXD(qxvpx) = DStal{gij:)v (814)

X <Dstad &, F), (B18)
min F(dy, Px) = Fsad &, 7). (B15)

where we used simple algebra in the first line, contractivity
To prove the first inequalityB14), let M again be a quan- in the second line, and the definition D, in the third line.
tum operation representing measurement in the computaAn analogous argument can be used to establish the second
tional basis. Note that for ak, inequality (B15).
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