21 research outputs found

    Odontoglossum ringspot virus host range restriction in Nicotiana sylvestris maps to the replicase gene

    No full text
    The experimental host range of Odontoglossum ringspot virus (ORSV), a member of the tobamoviruses, includes several species of Nicotiana, but not N. sylvestris. However, ORSV was able to replicate in protoplasts from N. sylvestris leaves. By using the green fluorescent protein (GFP) as a marker inserted into ORSV, it was found that a small number of single epidermal cells became infected in mechanically inoculated leaves, but the virus did not move cell to cell. The ORSV movement protein (MP) and coat protein (CP) were examined for their ability to effect movement by substitution into Tobacco mosaic virus (TMV) hybrids. Both proteins and the 3 non-translated region (NTR) of ORSV allowed movement of TMV hybrids in N. sylvestris. These results suggested that the inability of ORSV to move in N. sylvestris was due to the replicase gene or the 5NTR. One possibility was that the replicase gene could indirectly affect movement by failing to produce subgenomic (sg) RNAs for exp ression of MP or CP, but this appeared not to be the case as ORSV replicated and produced MP and CP sgRNAs, both of which were translated in N. sylvestris protoplasts. Additionally, genomic RNA was encapsidated into virions in N, sylvestris protoplasts. Because the 5NTR permitted efficient replication and production of replicase proteins, these findings suggest that the replicase of ORSV is responsible for the defect in cell-to-cell movement of ORSV in N. sylvestris

    Structural characterization of HC-Pro, a plant virus multifunctional protein.

    No full text
    Nom de l'Ă©quipe en 2003 : Canaux et RĂ©cepteurs Membranaires (CRM) ; C. Plisson et M. Drucker contributed equally to this workInternational audienceThe helper component proteinase (HC-Pro) is a key protein encoded by plant viruses of the genus Potyvirus. HC-Pro is involved in different steps of the viral cycle, aphid transmission, replication, and virus cell-to-cell and systemic movement and is a suppressor of post-transcriptional gene silencing. Structural knowledge of HC-Pro is required to better understand its multiple functions. To this aim, we purified His-tagged wild-type HC-Pro and a N-terminal deletion mutant (DeltaHC-Pro) from plants infected with recombinant potyviruses. Biochemical analysis of the recombinant proteins confirmed that HC-Pro is a dimer in solution, that the N terminus is not essential for self-interaction, and that a large C-terminal domain is highly resistant to proteolysis. Two-dimensional crystals of the recombinant proteins were successfully grown on Ni2+-chelating lipid monolayers. Comparison of projection maps of negatively stained crystals revealed that HC-Pro is composed of two domains separated by a flexible constriction. Cryo-electron crystallography of DeltaHC-Pro allowed us to calculate a projection map at 9-A resolution. Our data from electron microscopy, biochemical analysis, and secondary structure predictions lead us to suggest a model for structure/function relationships in the HC-Pro protei

    Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G

    No full text
    Previous resistance analyses of Arabidopsis thaliana mutants knocked out for eukaryotic translation initiation factors showed that disruption of the At-eIF(iso)4E or both the At-eIF(iso)4G1 and At-eIF(iso)4G2 genes resulted in resistance against turnip mosaic virus (TuMV). This study selected TuMV virulent variants that overcame this resistance and showed that two independent mutations in the region coding for the viral genome-linked protein (VPg) were sufficient to restore TuMV virulence in At-eIF(iso)4E and At-eIF(iso)4G1xAt-eIF(iso)4G2 knockout plants. As a VPg-eIF(iso)4E interaction has been shown previously to be critical for TuMV infection, a systematic analysis of the interactions between A. thaliana eIF4Es and VPgs of virulent and avirulent TuMVs was performed. The results suggest that virulent TuMV variants may use an eIF4F-independent pathway. © 2010 SGM

    Molecular mapping of the viral determinants of systemic wilting induced by a Lettuce mosaic virus (LMV) isolate in some lettuce cultivars

    No full text
    The isolate AF199 of Lettuce mosaic virus (LMV, genus Potyvirus) causes local lesions followed by systemic wilting and plant death in the lettuce cultivars Ithaca and Vanguard 75. Analysis of the phenotype of virus chimeras revealed that a region within the PI protein coding region (nucleotides 112-386 in the viral genome) and/or another one within the CI protein coding region (nucleoticles 5496-5855) are sufficient together to cause the lethal wilting in Ithaca, but not in Vanguard 75. This indicates that the determinants of this particular symptom are different in these two lettuce cultivars. The wilting phenotype was not directly correlated with differences in the deduced amino acid sequence of these two regions. Furthermore, transient expression of the LMV-AF 199 proteins, separately or in combination, did not induce local necrosis or any other visible reaction in the plants. Together, these results Suggest that the systemic wilting reaction might be Clue to RNA rather than protein sequences. (c) 2004 Elsevier B.V. All rights reserved
    corecore