19,483 research outputs found

    Multi-scalar field cosmology from SFT: an exactly solvable approximation

    Full text link
    We consider the appearance of multiple scalar fields in SFT inspired non-local models with a single scalar field at late times. In this regime all the scalar fields are free. This system minimally coupled to gravity can be analyzed approximately or numerically. The main result of this note is the introduction of an exactly solvable model which obeys an exact solution in the cosmological context for the Friedmann equations and that reproduces the behavior expected from SFT in the asymptotic regime. Different applications of such a potential to multi-field cosmological models are discussed.Comment: Extended version of the proceedings of the Bogolyubov-2009 conferenc

    Imaginary Time Correlations and the phaseless Auxiliary Field Quantum Monte Carlo

    Full text link
    The phaseless Auxiliary Field Quantum Monte Carlo method provides a well established approximation scheme for accurate calculations of ground state energies of many-fermions systems. Here we apply the method to the calculation of imaginary time correlation functions. We give a detailed description of the technique and we test the quality of the results for static and dynamic properties against exact values for small systems.Comment: 13 pages, 6 figures; submitted to J. Chem. Phy

    Gravitational collapse of magnetized clouds II. The role of Ohmic dissipation

    Full text link
    We formulate the problem of magnetic field dissipation during the accretion phase of low-mass star formation, and we carry out the first step of an iterative solution procedure by assuming that the gas is in free-fall along radial field lines. This so-called ``kinematic approximation'' ignores the back reaction of the Lorentz force on the accretion flow. In quasi steady-state, and assuming the resistivity coefficient to be spatially uniform, the problem is analytically soluble in terms of Legendre's polynomials and confluent hypergeometric functions. The dissipation of the magnetic field occurs inside a region of radius inversely proportional to the mass of the central star (the ``Ohm radius''), where the magnetic field becomes asymptotically straight and uniform. In our solution, the magnetic flux problem of star formation is avoided because the magnetic flux dragged in the accreting protostar is always zero. Our results imply that the effective resistivity of the infalling gas must be higher by several orders of magnitude than the microscopic electric resistivity, to avoid conflict with measurements of paleomagnetism in meteorites and with the observed luminosity of regions of low-mass star formation.Comment: 20 pages, 4 figures, The Astrophysical Journal, in pres

    Black hole solutions of N=2, d=4 supergravity with a quantum correction, in the H-FGK formalism

    Get PDF
    We apply the H-FGK formalism to the study of some properties of the general class of black holes in N=2 supergravity in four dimensions that correspond to the harmonic and hyperbolic ansatze and obtain explicit extremal and non-extremal solutions for the t^3 model with and without a quantum correction. Not all solutions of the corrected model (quantum black holes), including in particular a solution with a single q_1 charge, have a regular classical limit.Comment: Latex2e file +Bibtex file, 35 pages, no figure

    Sub-structure formation in starless cores

    Get PDF
    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field), are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become nonlinear and steepen into shocks at a time tnlt_{\rm nl}, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgrt_{\rm gr}. We evaluate analytically the time tnlt_{\rm nl} at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnlt_{\rm nl} is smaller than tgrt_{\rm gr}, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.Comment: 8 pages, 4 figure

    Cosmic ray biannual variation

    Get PDF
    The study of the cosmic ray (CR) power spectrum has revealed a significant variation with a period around 2 yr that cannot be explained as a high order harmonic of the 11 yr solar cycle. Comparative study of the correlation on different time scales between CR intensity and Rz, aa, high speed streams and polar hole size has put in evidence that a high degree of coherency exists between each couple of variables at 1.58 to 1.64 yr, except between CR and Rz. On the other hand cyclic variation on a short time scale, around 26 months, has been claimed to be present in the neutrino flux. Critical tests of this hypothesis are considered and a preliminary result seems to indicate that the hypothesis of the existence of a 1.6 yr periodicity in the neutrino data during the measurement time interval, has a significance or = 99.9%. The possible origin of this variation as due to a contribution either of CR interactions in the upper atmosphere or to the solar dynamics, are discussed

    A new smart dynamic external fixator in the treatment of complex fractures of the proximal interphalangeal joint of the long fingers.

    Get PDF
    Treatment of articular fractures of the proximal interphalangeal (PIP) joint of the hand can be a hard challenge. Ideal treatment should include an anatomic reduction, stable fixation and the possibility of early finger mobilization to prevent joint stiffness. We propose for the treatment of these fractures a new smart dynamic external fixator (SDEF), derived from the device described by Suzuki and based on the concept of the capsuloligamentotaxis described by Vidal

    Collective dipole excitations in sodium clusters

    Full text link
    Some properties of small and medium sodium clusters are described within the RPA approach using a projected spherical single particle basis. The oscillator strengths calculated with a Schiff-like dipole transition operator and folded with Lorentzian functions are used to calculate the photoabsorbtion cross section spectra. The results are further employed to establish the dependence of the plasmon frequency on the number of cluster components. Static electric polarizabilities of the clusters excited in a RPA dipole state are also calculated. Comparison of our results with the corresponding experimental data show an overall good agreement.Comment: 23 pages, 5 figure
    corecore