500 research outputs found

    Deviations from Scale Invariance near a General Conformal Background

    Full text link
    Deviations from scale invariance resulting from small perturbations of a general two dimensional conformal field theory are studied. They are expressed in terms of beta functions for renormalization of general couplings under local change of scale. The beta functions for homogeneous background are given perturbatively in terms of the data of the original conformal theory without any specific assumptions on its nature. The renormalization of couplings to primary operators and to first descendents is considered as well as that of couplings of a dilatonic type which involve explicit dependence on world sheet curvature.Comment: 24 pages.; latex file; RI-147; (07/92

    Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells.

    Get PDF
    Myosin VIIA is expressed by sensory hair cells and has a primary structure predicting a role in membrane trafficking and turnover, processes that may underlie the susceptibility of hair cells to aminoglycoside antibiotics. [3H]Gentamicin accumulation and the effects of aminoglycosides were therefore examined in cochlear cultures of mice with different missense mutations in the myosin VIIA gene, Myo7a, to see whether myosin VIIA plays a role in aminoglycoside ototoxicity. Hair cells from homozygous mutant Myo7a(sh1) mice, with a mutation in a non-conserved region of the myosin VIIA head, respond rapidly to aminoglycoside treatment and accumulate high levels of gentamicin. Hair cells from homozygous mutant Myo7a(6J) mice, with a mutation at a highly conserved residue close to the ATP binding site of the myosin VIIA head, do not accumulate [3H]gentamicin and are protected from aminoglycoside ototoxicity. Hair cells from heterozygotes of both alleles accumulate [3H]gentamicin and respond to aminoglycosides. Although aminoglycoside uptake is thought to be via apical surface-associated endocytosis, coated pit numbers on the apical membrane of heterozygous and homozygous Myo7a(6J) hair cells are similar. Pulse-chase experiments with cationic ferritin confirm that the apical endocytotic pathway is functional in homozygous Myo7a(6J) hair cells. Transduction currents can be recorded from both heterozygous and homozygous Myo7a(6J) hair cells, suggesting it is unlikely that the drug enters via diffusion through the mechanotransducer channel. The results show that myosin VIIA is required for aminoglycoside accumulation in hair cells. Myosin VIIA may transport a putative aminoglycoside receptor to the hair cell surface, indirectly translocate it to sites of membrane retrieval, or retain it in the endocytotic pathway

    More Results in N=1N=1 Supersymmetric Gauge Theories

    Get PDF
    We present the exact effective superpotentials in 4d4d, N=1N=1 supersymmetric SU(2)SU(2) gauge theories with N3N_3 triplets and N2N_2 doublets of matter superfields. For the theories with a single triplet matter superfield we present the exact gauge couplings for arbitrary bare masses and Yukawa couplings.Comment: 9 page

    Modularity map of the network of human cell differentiation

    Full text link
    Cell differentiation in multicellular organisms is a complex process whose mechanism can be understood by a reductionist approach, in which the individual processes that control the generation of different cell types are identified. Alternatively, a large scale approach in search of different organizational features of the growth stages promises to reveal its modular global structure with the goal of discovering previously unknown relations between cell types. Here we sort and analyze a large set of scattered data to construct the network of human cell differentiation (NHCD) based on cell types (nodes) and differentiation steps (links) from the fertilized egg to a crying baby. We discover a dynamical law of critical branching, which reveals a fractal regularity in the modular organization of the network, and allows us to observe the network at different scales. The emerging picture clearly identifies clusters of cell types following a hierarchical organization, ranging from sub-modules to super-modules of specialized tissues and organs on varying scales. This discovery will allow one to treat the development of a particular cell function in the context of the complex network of human development as a whole. Our results point to an integrated large-scale view of the network of cell types systematically revealing ties between previously unrelated domains in organ functions.Comment: 32 pages, 7 figure

    β3-integrin is required for differentiation in OC-2 cells derived from mammalian embryonic inner ear

    Get PDF
    Background The mammalian inner ear contains the organ of Corti which is responsible for the conversion of sound into neuronal signals. This specialised epithelial tissue is the product of a complex developmental process where a common precursor cell type differentiates into the sound transducing hair cells and the non-innervated supporting cells. We hypothesised that integrin proteins, which are involved in cell attachment to extracellular matrix proteins and cellular signalling, play a role in the differentiation process of the precursor inner ear epithelial cells. To test our hypothesis we have utilised a cell line (OC-2) derived from E13 embryonic immortomouse inner ears. In vitro, by switching the incubation temperature from 33°C to 39°C, the OC-2 cells can be induced to differentiate and express hair cells markers, such as Myosin VIIa. The OC-2 cells are thus a useful model system for testing mechanism of hair cells differentiation. Results We have identified 4 integrin subunits which are expressed in OC-2 cells: α6, αv, β1 and β3. Among these, the relative level of expression of the αv, β1 and β3 subunits increased in a time dependent manner when the cells were exposed to the differentiating temperature of 39°C, most notably so for β3 which was not detectable at 33°C. Treatment of fully differentiated OC-2 cells with siRNA against the four integrin subunits reduced the expression of not only the respective integrin proteins but also of the hair cell marker Myosin VIIa. Conversely over-expression of β3 was sufficient to induce the expression of Myosin VIIa at 33°C. Conclusions Our data demonstrate that modulation of integrin expression is associated with the differentiation process of the OC-2 cells. This suggests that the maturation of the organ of Corti, from where OC-2 cells are derived, may also depend on changes of gene expression associated with integrin expression

    Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation

    Get PDF
    In the adult auditory organ, mechanoelectrical transducer (MET) channels are essential for transducing acoustic stimuli into electrical signals. In the absence of incoming sound, a fraction of the MET channels on top of the sensory hair cells are open, resulting in a sustained depolarizing current. By genetically manipulating the in vivo expression of molecular components of the MET apparatus, we show that during pre-hearing stages the MET current is essential for establishing the electrophysiological properties of mature inner hair cells (IHCs). If the MET current is abolished in adult IHCs, they revert into cells showing electrical and morphological features characteristic of pre-hearing IHCs, including the re-establishment of cholinergic efferent innervation. The MET current is thus critical for the maintenance of the functional properties of adult IHCs, implying a degree of plasticity in the mature auditory system in response to the absence of normal transduction of acoustic signals

    Defining the Cellular Environment in the Organ of Corti following Extensive Hair Cell Loss: A Basis for Future Sensory Cell Replacement in the Cochlea

    Get PDF
    Background: Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. Methodology/Principal Findings: Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca’s, suggesting genetic background influences the rate of re-organisation

    Defective Gpsm2/G alpha(i3) signalling disrupts stereocilia development and growth cone actin dynamics in Chudley-McCullough syndrome

    Get PDF
    Mutations in GPSM2 cause Chudley-McCullough syndrome (CMCS), an autosomal recessive neurological disorder characterized by early-onset sensorineural deafness and brain anomalies. Here, we show that mutation of the mouse orthologue of GPSM2 affects actin-rich stereocilia elongation in auditory and vestibular hair cells, causing deafness and balance defects. The G-protein subunit Gαi3, a well-documented partner of Gpsm2, participates in the elongation process, and its absence also causes hearing deficits. We show that Gpsm2 defines an ∼200 nm nanodomain at the tips of stereocilia and this localization requires the presence of Gαi3, myosin 15 and whirlin. Using single-molecule tracking, we report that loss of Gpsm2 leads to decreased outgrowth and a disruption of actin dynamics in neuronal growth cones. Our results elucidate the aetiology of CMCS and highlight a new molecular role for Gpsm2/Gαi3 in the regulation of actin dynamics in epithelial and neuronal tissues
    corecore