34 research outputs found

    Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2

    Get PDF
    International audienceProstate cancer (PCa) is one of the major public health problems in Western countries. Recently, the TMPRSS2:ERG gene fusion, which results in the aberrant expression of the transcription factor ERG, has been shown to be the most common gene rearrangement in PCa. Previous studies have determined the contributions of this fusion in PCa disease initiation and/or progression in vitro and in vivo. In this study on TMPRSS2:ERG regulation in PCa, we used an androgen receptor and TMPRSS2:ERG fusion double-negative PCa cell model: PC3c. In three cell clones with different TMPRSS2:ERG expression levels, ectopic expression of the fusion resulted in significant induction of cell migration and invasion in a dose-dependent manner. In agreement with this phenotype, high-throughput microarray analysis revealed that a set of genes, functionally associated with cell motility and invasiveness, were deregulated in a dose-dependent manner in TMPRSS2:ERG-expressing cells. Importantly, we identified increased MMP9 (Metalloproteinase 9) and PLXNA2 (Plexin A2) expression in TMPRSS2:ERG-positive PCa samples, and their expression levels were significantly correlated with ERG expression in a PCa cohort. In line with these findings, there was evidence that TMPRSS2:ERG directly and positively regulates MMP9 and PLXNA2 expression in PC3c cells. Moreover, PLXNA2 upregulation contributed to TMPRSS2:ERG-mediated enhancements of PC3c cell migration and invasion. Furthermore, and importantly, PLXNA2 expression was upregulated in metastatic PCa tumors compared with localized primary PCa tumors. This study provides novel insights into the role of the TMPRSS2:ERG fusion in PCa metastasis

    Sex- and Diet-Specific Changes of Imprinted Gene Expression and DNA Methylation in Mouse Placenta under a High-Fat Diet

    Get PDF
    Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable

    Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association

    Get PDF
    The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes

    A new murine model of osteoblastic/osteolytic lesions from human androgen-resistant prostate cancer

    Get PDF
    BACKGROUND: Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially responds to androgen blockade strategies, it often becomes castration-resistant (CRPC for Castration Resistant Prostate Cancer). Most of the murine models of mixed lesions derived from prostate cancer cells are androgen sensitive. Thus, we established a new model of CRPC (androgen receptor (AR) negative) that causes mixed lesions in bone. METHODS: PC3 and its derived new cell clone PC3c cells were directly injected into the tibiae of SCID male mice. Tumor growth was analyzed by radiography and histology. Direct effects of conditioned medium of both cell lines were tested on osteoclasts, osteoblasts and osteocytes. RESULTS: We found that PC3c cells induced mixed lesions 10 weeks after intratibial injection. In vitro, PC3c conditioned medium was able to stimulate tartrate resistant acid phosphatase (TRAP)-positive osteoclasts. Osteoprotegerin (OPG) and endothelin-1 (ET1) were highly expressed by PC3c while dikkopf-1 (DKK1) expression was decreased. Finally, PC3c highly expressed bone associated markers osteopontin (OPN), Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP) and produced mineralized matrix in vitro in osteogenic conditions. CONCLUSIONS: We have established a new CRPC cell line as a useful system for modeling human metastatic prostate cancer which presents the mixed phenotype of bone metastases that is commonly observed in prostate cancer patients with advanced disease. This model will help to understand androgen-independent mechanisms involved in the progression of prostate cancer in bone and provides a preclinical model for testing the effects of new treatments for bone metastases

    Décryptage des signalisations moléculaires contrôlant la différenciation des chondrocytes : retombées pour l’ingénierie tissulaire du cartilage : le projet ANR-TecSan PROMOCART

    No full text
    International audienceProject PROMOCART (2007–2010) was adopted following the call 2006 ANR-TecSan. It was led by the laboratory of Biology and Engineering of Cartilage (Lyon), and carried out in partnership with the laboratory of Extracellular Matrix and Pathology (Caen), Lille Institute of Biology, Symatèse Biomatériaux company (Chaponost) and laboratory of Skin Substitutes (Lyon Hospital). Cartilage presents poor intrinsic healing capacity. Autologous chondrocyte implantation (ACI) is a worldwide used technique applied to focal defects of articular cartilage. However, it implies a step of cell amplification on plastic, which results in the loss of chondrocyte differentiation. The first objective of PROMOCART was to determine if bone morphogenetic protein (BMP)-2 could maintain or restore the differentiated phenotype of human chondrocytes. With the view of applying ACI to developing osteoarthritic lesions, we developed a new method of human cartilage reconstruction by using collagen sponges, BMP-2 and hypoxic culture conditions. We controlled the quality of the cellular phenotype by using new cartilage markers.Le projet PROMOCART (2007–2010) a été retenu suite à l’appel 2006 ANR-TecSan. Il a été conduit par le laboratoire « Biologie et ingénierie du cartilage » (Lyon) en partenariat avec les laboratoires « Matrice extracellulaire et pathologie » (Caen), l’institut de biologie de Lille, la société Symatèse biomatériaux (Chaponost) et le laboratoire des substituts cutanés des hospices civils de Lyon. Le cartilage est un tissu au potentiel de cicatrisation spontané très limité. La transplantation de chondrocytes autologues (TCA) est une technique mondialement utilisée pour le traitement de lésions limitées de cartilage articulaire. Cependant, cette approche implique une amplification des chondrocytes sur plastique, ce qui entraîne leur dédifférenciation. Un premier objectif de PROMOCART était de déterminer si la bone morphogenetic protein (BMP)-2 est capable de favoriser le maintien ou la restauration du phénotype des chondrocytes humains. Dans le but d’étendre la TCA à des lésions cartilagineuses plus importantes comme celles des arthroses débutantes, nous avons développé un procédé de reconstruction de cartilage humain dans des éponges de collagène en présence de BMP-2 et dans des conditions hypoxiques. Nous avons contrôlé la qualité du phénotype cellulaire par l’utilisation de nouveaux marqueurs du cartilage

    A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters

    No full text
    The nuclear retinoic acid (RA) receptor alpha (RARα) is a transcriptional transregulator that controls the expression of specific gene subsets through binding at response elements and dynamic interactions with coregulators, which are coordinated by the ligand. Here, we highlighted a novel paradigm in which the transcription of RARα target genes is controlled by phosphorylation cascades initiated by the rapid RA activation of the p38MAPK/MSK1 pathway. We demonstrate that MSK1 phosphorylates RARα at S369 located in the ligand-binding domain, allowing the binding of TFIIH and thereby phosphorylation of the N-terminal domain at S77 by cdk7/cyclin H. MSK1 also phosphorylates histone H3 at S10. Finally, the phosphorylation cascade initiated by MSK1 controls the recruitment of RARα/TFIIH complexes to response elements and subsequently RARα target gene activation. Cancer cells characterized by a deregulated p38MAPK/MSK1 pathway, do not respond to RA, outlining the essential contribution of the RA-triggered phosphorylation cascade in RA signalling
    corecore