12,793 research outputs found

    Constructing topological models by symmetrization: A PEPS study

    Get PDF
    Symmetrization of topologically ordered wavefunctions is a powerful method for constructing new topological models. Here, we study wavefunctions obtained by symmetrizing quantum double models of a group GG in the Projected Entangled Pair States (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G~\tilde G which is always non-abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wavefunctions in the same phase as the double model of G~\tilde G. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G~\tilde G.Comment: 10 pages. v2: accepted versio

    PIH42 Effectiveness of a Protocol for Respiratory Syncytial Virus (RSV) Immunoprophylaxis in Pre-Term Infants Born at <34 Weeks Gestation Age

    Get PDF

    Water loss in horticultural products. Modelling, data analysis and theoretical considerations

    Get PDF
    The water loss of individual fruit (melon, plum and mandarin) was analysed using the traditional diffusion based approach and a kinetic approach. Applying simple non linear regression, both approaches are the same, resulting in a quite acceptable analysis. However, by applying mixed effects non linear regression analysis, explicitly including the variation over the individuals, the kinetic approach was found to reflect the processes occurring during mass loss better than the diffusion approach. All the variation between the individuals in a batch could be attributed to the initial mass or size of the individuals. The fraction of the fruit mass that is available for transpiration is the key item in the water loss process, rather than the skin resistance and fruit area. Obtained explained parts are well over 99%

    Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    Get PDF
    We present a detailed 2D study of the ionized ISM of IZw18 using new PMAS-IFU optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU-aperture (~ 1.4 kpc x 1.4 kpc) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the NW knot and thereabouts. We detect a Wolf-Rayet feature near the NW knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity-indicator R23 and the ionization parameter (as traced by [OIII]/[OII]) across IZw18. Over ~ 0.30 kpc^2, using the [OIII]4363 line, we compute Te[OIII] values (~ 15000 - 25000 K), and oxygen abundances are derived from the direct determinations of Te[OIII]. More than 70% of the higher-Te[OIII] (> 22000 K) spaxels are HeII4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 +/- 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.Comment: Accepted for publication in MNRAS, 13 pages, 10 figures, 4 table

    Resolving galaxies in time and space: II: Uncertainties in the spectral synthesis of datacubes

    Full text link
    In a companion paper we have presented many products derived from the application of the spectral synthesis code STARLIGHT to datacubes from the CALIFA survey, including 2D maps of stellar population properties and 1D averages in the temporal and spatial dimensions. Here we evaluate the uncertainties in these products. Uncertainties due to noise and spectral shape calibration errors and to the synthesis method are investigated by means of a suite of simulations based on 1638 CALIFA spectra for NGC 2916, with perturbations amplitudes gauged in terms of the expected errors. A separate study was conducted to assess uncertainties related to the choice of evolutionary synthesis models. We compare results obtained with the Bruzual & Charlot models, a preliminary update of them, and a combination of spectra derived from the Granada and MILES models. About 100k CALIFA spectra are used in this comparison. Noise and shape-related errors at the level expected for CALIFA propagate to 0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities. Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16 mag for shape errors. Higher order products such as SFHs are more uncertain, but still relatively stable. Due to the large number statistics of datacubes, spatial averaging reduces uncertainties while preserving information on the history and structure of stellar populations. Radial profiles of global properties, as well as SFHs averaged over different regions are much more stable than for individual spaxels. Uncertainties related to the choice of base models are larger than those associated with data and method. Differences in mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V. Spectral residuals are ~ 1% on average, but with systematic features of up to 4%. The origin of these features is discussed. (Abridged)Comment: A&A, accepte

    Phase transition in the three dimensional Heisenberg spin glass: Finite-size scaling analysis

    Get PDF
    We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates that the data is compatible with the most economical scenario: a common transition temperature for spins and chiralities.Comment: Version to appear in Phys. Rev.
    corecore