11 research outputs found

    PERFORMA AKUSTIK PADA RUANG MUSIK DI SEKOLAH LUAR BIASA NEGERI MARAWOLA KABUPATEN SIGI

    Get PDF
    Ruang musik dengan menggunakan bahan isolasi bunyi dari glasswool yang dipadukan dengan beberapa bahan bangunan, seperti tripleks, hardboard dan dinding bata, serta desain tata letak ruang dan bukaan yang spesifik sesuai dengan aturan performa akustik pada umumnya, dimana akan dibahas eksplorasi desain akustik dengan pendekatan analisa pengaruh level/tingkatan suara.Hasil penelitian menunjukkan bahwa kajian performa level suara dan performa akuistik menunjukkan hasil yang signifikan yaitu mampu menghilangkan dengung dalam ruang sehingga menghasilkan suara musik yang baik dalam ruang dan mampu menahan rambatan bunyi poda lingkungan sekitarnya sehingga keberadaan ruang musik di Sekolah Luar Biasa Marawola tersebut tidak menggangu aktifitas belajar-mengajar pada ruang sekitarny

    Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart

    Get PDF
    Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca(2+))-handling in the human heart.RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6).Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+)-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+)-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM.DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+)-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2+)-handling genes

    Endolysosomal two‐pore channels regulate autophagy in cardiomyocytes

    No full text
    Key points Two‐pore channels (TPCs) were identified as a novel family of endolysosome‐targeted calcium release channels gated by nicotinic acid adenine dinucleotide phosphate, as also as intracellular Na+ channels able to control endolysosomal fusion, a key process in autophagic flux. Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of cardiovascular pathologies, including heart failure. We report direct evidence indicating that TPCs are involved in regulating autophagy in cardiomyocytes, and that TPC knockout mice show alterations in the cardiac lysosomal system. TPC downregulation implies a decrease in the viability of cardiomyocytes under starvation conditions. In cardiac tissues from both humans and rats, TPC transcripts and protein levels were higher in females than in males, and correlated negatively with markers of autophagy. We conclude that the endolysosomal channels TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes, and also that they are differentially expressed in male and female hearts. Abstract Autophagy participates in physiological and pathological remodelling of the heart. The endolysosomal two‐pore channels (TPCs), TPC1 and TPC2, have been implicated in the regulation of autophagy. The present study aimed to investigate the role of TPC1 and TPC2 in basal and induced cardiac autophagic activity. In cultured cardiomyocytes, starvation induced a significant increase in TPC1 and TPC2 transcripts and protein levels that paralleled the increase in autophagy identified by increased LC3‐II and decreased p62 levels. Small interfering RNA depletion of TPC2 alone or together with TPC1 increased both LC3II and p62 levels under basal conditions and in response to serum starvation, suggesting that, under conditions of severe energy depletion (serum plus glucose starvation), changes in the autophagic flux (as assessed by use of bafilomycin A1) occurred either when TPC1 or TPC2 were downregulated. The knockdown of TPCs diminished cardiomyocyte viability under starvation and simulated ischaemia. Electron micrographs of hearts from TPC1/2 double knockout mice showed that cardiomyocytes contained large numbers of immature lysosomes with diameters significantly smaller than those of wild‐type mice. In cardiac tissues from humans and rats, TPC1 and TPC2 transcripts and protein levels were higher in females than in males. Furthermore, transcript levels of TPCs correlated negatively with p62 levels in heart tissues. TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes (i.e. there is a negative effect on cell viability under stress conditions in their absence) and they are differentially expressed in male and female human and murine hearts, where they correlate with markers of autophagy. </p

    Endolysosomal two‐pore channels regulate autophagy in cardiomyocytes

    No full text
    Key points Two‐pore channels (TPCs) were identified as a novel family of endolysosome‐targeted calcium release channels gated by nicotinic acid adenine dinucleotide phosphate, as also as intracellular Na+ channels able to control endolysosomal fusion, a key process in autophagic flux. Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of cardiovascular pathologies, including heart failure. We report direct evidence indicating that TPCs are involved in regulating autophagy in cardiomyocytes, and that TPC knockout mice show alterations in the cardiac lysosomal system. TPC downregulation implies a decrease in the viability of cardiomyocytes under starvation conditions. In cardiac tissues from both humans and rats, TPC transcripts and protein levels were higher in females than in males, and correlated negatively with markers of autophagy. We conclude that the endolysosomal channels TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes, and also that they are differentially expressed in male and female hearts. Abstract Autophagy participates in physiological and pathological remodelling of the heart. The endolysosomal two‐pore channels (TPCs), TPC1 and TPC2, have been implicated in the regulation of autophagy. The present study aimed to investigate the role of TPC1 and TPC2 in basal and induced cardiac autophagic activity. In cultured cardiomyocytes, starvation induced a significant increase in TPC1 and TPC2 transcripts and protein levels that paralleled the increase in autophagy identified by increased LC3‐II and decreased p62 levels. Small interfering RNA depletion of TPC2 alone or together with TPC1 increased both LC3II and p62 levels under basal conditions and in response to serum starvation, suggesting that, under conditions of severe energy depletion (serum plus glucose starvation), changes in the autophagic flux (as assessed by use of bafilomycin A1) occurred either when TPC1 or TPC2 were downregulated. The knockdown of TPCs diminished cardiomyocyte viability under starvation and simulated ischaemia. Electron micrographs of hearts from TPC1/2 double knockout mice showed that cardiomyocytes contained large numbers of immature lysosomes with diameters significantly smaller than those of wild‐type mice. In cardiac tissues from humans and rats, TPC1 and TPC2 transcripts and protein levels were higher in females than in males. Furthermore, transcript levels of TPCs correlated negatively with p62 levels in heart tissues. TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes (i.e. there is a negative effect on cell viability under stress conditions in their absence) and they are differentially expressed in male and female human and murine hearts, where they correlate with markers of autophagy. </p

    Nesfatin-1: a new energy-regulating peptide with pleiotropic functions. Implications at cardiovascular level

    No full text
    corecore