9 research outputs found

    Synthesis and reactivity of 4-oxo-5-trimethylsilanyl derived α-amino acids

    Get PDF
    A Lewis-acid promoted one-carbon homologation of an aspartic acid semialdehyde with trimethylsilyldiazomethane has led to the efficient synthesis of two silicon-containing α-amino acids. The use of trimethylaluminium or catalytic tin(II) chloride gave novel 4-oxo-5-trimethylsilanyl derived amino acids in yields of 71–88%. An investigation into the reactivity of these highly functional α-amino acids showed that selective cleavage of the C–Si bond could be achieved under mild basic conditions to give a protected derivative of the naturally occurring amino acid, 4-oxo-l-norvaline. Alternatively, Peterson olefination with aryl or alkyl aldehydes resulted in the formation of E-enone derived α-amino acids

    Different efficacy of adenosine and NECA derivatives at the human A3 adenosine receptor: Insight into the receptor activation switch

    No full text
    A3 Adenosine receptors are promising drug targets for a number of diseases and intense efforts are dedicated to develop selective agonists and antagonists of these receptors. A series of adenosine derivatives with 2-(ar)-alkynyl chains, with high affinity and different degrees of selectivity for human A3 adenosine receptors was tested for the ability to inhibit forskolin-stimulated adenylyl cyclase. All these derivatives are partial agonists at A3 adenosine receptors; their efficacy is not significantly modified by the introduction of small alkyl substituents in the N6-position. In contrast, the adenosine-5′-N-ethyluronamide (NECA) analogs of 2-(ar)-alkynyladenosine derivatives are full A3 agonists. Molecular modeling analyses were performed considering both the conformational behavior of the ligands and the impact of 2- and 5′-substituents on ligand–target interaction. The results suggest an explanation for the different agonistic behavior of adenosine and NECA derivatives, respectively. A sub-pocket of the binding site was analyzed as a crucial interaction domain for receptor activation
    corecore