1,125 research outputs found

    On solitary wave diffraction by multiple, in-line vertical cylinders

    Get PDF
    The interaction of solitary waves with multiple, in-line vertical cylinders is investigated. The fixed cylinders are of constant circular cross section and extend from the seafloor to the free surface. In general, there are N of them lined in a row parallel to the incoming wave direction. Both the nonlinear, generalized Boussinesq and the Green–Naghdi shallow-water wave equations are used. A boundary-fitted curvilinear coordinate system is employed to facilitate the use of the finite-difference method on curved boundaries. The governing equations and boundary conditions are transformed from the physical plane onto the computational plane. These equations are then solved in time on the computational plane that contains a uniform grid and by use of the successive over-relaxation method and a second-order finite-difference method to determine the horizontal force and overturning moment on the cylinders. Resulting solitary wave forces from the nonlinear Green–Naghdi and the Boussinesq equations are presented, and the forces are compared with the experimental data when available.</p

    Thin-Film Metamaterials called Sculptured Thin Films

    Full text link
    Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear--nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.Comment: to be published in Proc. ICTP School on Metamaterials (Augsut 2009, Sibiu, Romania

    Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams

    Full text link
    Spatial phase inhomogeneity at the nano- to microscale is widely observed in strongly-correlated electron materials. The underlying mechanism and possibility of artificially controlling the phase inhomogeneity are still open questions of critical importance for both the phase transition physics and device applications. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO2. By continuously tuning strain over a wide range in single-crystal VO2 micro- and nanobeams, here we demonstrate the nucleation and manipulation of one-dimensionally ordered metal-insulator domain arrays along the beams. Mott transition is achieved in these beams at room temperature by active control of strain. The ability to engineer phase inhomogeneity with strain lends insight into correlated electron materials in general, and opens opportunities for designing and controlling the phase inhomogeneity of correlated electron materials for micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio

    The effect of diclofenac sodium on neural tube development in the early stage of chick embryos

    Get PDF
    Background: Neural tube defects are congenital malformations of the central nervous system. Genetic predisposition and some environmental factors play an important role in the development of neural tube defects. This study aimed to investigate the effects of diclofenac sodium on the neural tube development in a chick embryo model that corresponds to the first month of vertebral deve- lopment in mammals.  Materials and methods: Seventy-five fertile, specific pathogen-free eggs were incubated for 28 h and were divided into five groups of 15 eggs each. Diclofenac sodium was administered via the sub-blastodermic route at this stage. Incubation was continued till the end of the 48th h. All eggs were then opened and embryos were dissected from embryonic membranes and evaluated morphologically and histopathologically.  Results: It was determined that the use of increasing doses of diclofenac sodium led to defects of midline closure in early chicken embryos. There were statistically significant differences in neural tube positions (open or close) among the groups. In addition; crown–rump length, somite number were significantly decreased in high dose experimental groups compared with control group.  Conclusions: This study showed that development of neurons is affected in chi- cken embryos after administration of diclofenac sodium. The exact teratogenic mechanism of diclofenac sodium is not clear; therefore it should be investigated.

    TYROBP genetic variants in early-onset Alzheimer's disease

    Get PDF
    We aimed to identify new candidate genes potentially involved in early-onset Alzheimer's disease (EOAD). Exome sequencing was conducted on 45 EOAD patients with either a family history of Alzheimer's disease (AD, <65 years) or an extremely early age at the onset (≤55 years) followed by multiple variant filtering according to different modes of inheritance. We identified 29 candidate genes potentially involved in EOAD, of which the gene TYROBP, previously implicated in AD, was selected for genetic and functional follow-up. Using 3 patient cohorts, we observed rare coding TYROBP variants in 9 out of 1110 EOAD patients, whereas no such variants were detected in 1826 controls (p = 0.0001), suggesting that at least some rare TYROBP variants might contribute to EOAD risk. Overexpression of the p.D50_L51ins14 TYROBP mutant led to a profound reduction of TREM2 expression, a well-established risk factor for AD. This is the first study supporting a role for genetic variation in TYROBP in EOAD, with in vitro support for a functional effect of the p.D50_L51ins14 TYROBP mutation on TREM2 expression

    Is early diagnosis of myofascial pain syndrome possible with the detection of latent trigger points by shear wave elastography?

    Get PDF
    Purpose: The aim of the study was to investigate the contribution of shear wave elastography to the diagnosis of myofascial pain syndrome (MPS) of the upper part of the trapezius. Material and methods: Ethical committee approval was obtained for the study. Thirty volunteer women with trigger points in the upper part of the trapezius muscle and 30 healthy women with a similar age distribution were included in the study. The patient group performed a self-stretching exercise program for 4 weeks. No intervention was applied to the control group. Muscle stiffness values of both groups were evaluated with shear wave elastography (SWE), and pain levels of all volunteers were evaluated by the Visual Analogue Scale at the beginning and the end of the study. The statistical analyses were performed using SPSS version 18.0. Results: There was a significant decrease after the treatment in terms of upper trapezius muscle stiffness and the pain levels in the patient group (p 0.05). Conclusions: SWE is a reliable method for detecting latent trigger points in MPS, and it can be used for evaluating the response to treatment

    Two novel loci, COBL and SLC10A2, for Alzheimer's disease in African Americans

    Get PDF
    INTRODUCTION: African Americans' (AAs) late-onset Alzheimer's disease (LOAD) genetic risk profile is incompletely understood. Including clinical covariates in genetic analyses using informed conditioning might improve study power. METHODS: We conducted a genome-wide association study (GWAS) in AAs employing informed conditioning in 1825 LOAD cases and 3784 cognitively normal controls. We derived a posterior liability conditioned on age, sex, diabetes status, current smoking status, educational attainment, and affection status, with parameters informed by external prevalence information. We assessed association between the posterior liability and a genome-wide set of single-nucleotide polymorphisms (SNPs), controlling for APOE and ABCA7, identified previously in a LOAD GWAS of AAs. RESULTS: Two SNPs at novel loci, rs112404845 (P = 3.8 × 10-8), upstream of COBL, and rs16961023 (P = 4.6 × 10-8), downstream of SLC10A2, obtained genome-wide significant evidence of association with the posterior liability. DISCUSSION: An informed conditioning approach can detect LOAD genetic associations in AAs not identified by traditional GWAS

    Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage

    Get PDF
    A fast-charging battery that supplies maximum energy is a key element for vehicle electrification. High-capacity silicon anodes offer a viable alternative to carbonaceous materials, but they are vulnerable to fracture due to large volumetric changes during charge???discharge cycles. The low ionic and electronic transport across the silicon particles limits the charging rate of batteries. Here, as a three-in-one solution for the above issues, we show that small amounts of sulfur doping (&lt;1 at%) render quasi-metallic silicon microparticles by substitutional doping and increase lithium ion conductivity through the flexible and robust self-supporting channels as demonstrated by microscopy observation and theoretical calculations. Such unusual doping characters are enabled by the simultaneous bottom-up assembly of dopants and silicon at the seed level in molten salts medium. This sulfur-doped silicon anode shows highly stable battery cycling at a fast-charging rate with a high energy density beyond those of a commercial standard anode

    Atomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures

    Get PDF
    Combination of mismatched materials in semiconductor nanowire heterostructures offers a freedom of bandstructure engineering that is impossible in standard planar epitaxy. Nevertheless, the presence of strain and structural defects directly control the optoelectronic properties of these nanomaterials. Understanding with atomic accuracy how mismatched heterostructures release or accommodate strain, therefore, is highly desirable. By using atomic resolution high angle annular dark field scanning transmission electron microscopy combined with geometrical phase analyses and computer simulations, we are able to establish the relaxation mechanisms (including both elastic and plastic deformations) to release the mismatch strain in axial nanowire heterostructures. Formation of misfit dislocations, diffusion of atomic species, polarity transfer, and induced structural transformations are studied with atomic resolution at the intermediate ternary interfaces. Two nanowire heterostructure systems with promising applications (InAs/InSb and GaAs/GaSb) have been selected as key examples
    corecore