56 research outputs found

    Literacy shapes thought: the case of event representation in different cultures

    Get PDF
    There has been a lively debate whether conceptual representations of actions or scenes follow a left-to-right spatial transient when participants depict such events or scenes. It was even suggested that conceptualizing the agent on the left side represents a universal. We review the current literature with an emphasis on event representation and on cross-cultural studies. While there is quite some evidence for spatial bias for representations of events and scenes in diverse cultures, their extent and direction depend on task demands, one‘s native language, and importantly, on reading and writing direction. Whether transients arise only in subject-verb-object languages, due to their linear sentential position of event participants, is still an open issue. We investigated a group of illiterate speakers of Yucatec Maya, a language with a predominant verb-object-subject structure. They were compared to illiterate native speakers of Spanish. Neither group displayed a spatial transient. Given the current literature, we argue that learning to read and write has a strong impact on representations of actions and scenes. Thus, while it is still under debate whether language shapes thought, there is firm evidence that literacy does

    I know your face but can’t remember your name:Age-related differences in the FNAME-12NL

    Get PDF
    OBJECTIVE: The Face-Name Associative Memory test (FNAME) has recently received attention as a test for early diagnosis of Alzheimer’s disease. So far, however, there has been no systematic investigation of the effects of aging. Here, we aimed to assess the extent to which the FNAME performance is modulated by normal ageing. METHOD: In a first step, we adapted the FNAME material to the Dutch population. In a second step, younger (n = 29) and older adults (n = 29) were compared on recall and recognition performance. RESULTS: Significant age effects on name recall were observed after the first exposure of new face-name pairs: younger adults remembered eight, whereas older adults remembered a mean of four out of twelve names. Although both age groups increased the number of recalled names with repeated face-name exposure, older adults did not catch up with the performance of the younger adults, and the age-effects remained stable. Despite of that, both age groups maintained their performance after a 30-min delay. Considering recognition, no age differences were demonstrated, and both age groups succeeded in the recognition of previously shown faces and names when presented along with distractors. CONCLUSIONS: This study presents for the first time the results of different age groups regarding cross-modal associative memory performance on the FNAME. The recall age effects support the hypothesis of age-related differences in associative memory. To use the FNAME as an early cognitive biomarker, further subscales are suggested to increase sensitivity and specificity in the clinical context

    Filling the void - enriching the feature space of successful stopping

    Get PDF
    The ability to inhibit behavior is crucial for adaptation in a fast changing environment and is commonly studied with the stop signal task. Current EEG research mainly focuses on the N200 and P300 ERPs and corresponding activity in the theta and delta frequency range, thereby leaving us with a limited understanding of the mechanisms of response inhibition. Here, 15 functional networks were estimated from time-frequency transformed EEG recorded during processing of a visual stop signal task. Cortical sources underlying these functional networks were reconstructed, and a total of 45 features, each representing spectrally and temporally coherent activity, were extracted to train a classifier to differentiate between go and stop trials. A classification accuracy of 85.55% for go and 83.85% for stop trials was achieved. Features capturing fronto-central delta- and theta activity, parieto-occipital alpha, fronto-central as well as right frontal beta activity were highly discriminating between trial-types. However, only a single network, comprising a feature defined by oscillatory activity below 12 Hz, was associated with a generator in the opercular region of the right inferior frontal cortex and showed the expected associations with behavioral inhibition performance. This study pioneers by providing a detailed ranking of neural features regarding their information content for stop and go differentiation at the single-trial level, and may further be the first to identify a scalp EEG marker of the inhibitory control network. This analysis allows for the characterization of the temporal dynamics of response inhibition by matching electrophysiological phenomena to cortical generators and behavioral inhibition performanc

    Understanding the relationship between apathy, cognition and functional outcome in schizophrenia: The significance of an ecological assessment

    Get PDF
    In recent years there has been an increasing interest in understanding the role apathy plays in mediating the relationship between cognitive impairment and functional outcome. In general, most studies measure cognition with traditional cognitive tests that give explicit instructions and guide the participants toward generating a response. However, given that apathy is defined by a decrease in self-initiated behavior, it is crucial to evaluate cognition with ecological tasks that do not explicitly direct the patient´s motivation to generate behaviors to assess the actual effect. This study investigated whether an ecological cognitive assessment (the Jansari Executive Function Assessment, JEF©) would uniquely contribute to the relationship between cognition, apathy, and functional outcome in schizophrenia. The Apathy Evaluation Scale (AES), neuropsychological tests and the JEF© were administered to 20 patients with schizophrenia. Hierarchical multiple regression and mediation analysis were performed to test the associations between the variables of interest. Results showed that JEF© explained a significant portion of the variance in AES (25%). In addition, apathy explained 36% of the variance in functional outcome. However, AES did not mediate between cognition and functional outcome. Our results highlight the importance of assessing cognition with tasks that require integration of cognitive functions needed for real life demands

    A user-centred approach to unlock the potential of non-invasive BCIs: an unprecedented international translational effort

    Get PDF
    Non-invasive Mental Task-based Brain-Computer Interfaces (MT-BCIs) enable their users to interact with the environment through their brain activity alone (measured using electroencephalography for example), by performing mental tasks such as mental calculation or motor imagery. Current developments in technology hint at a wide range of possible applications, both in the clinical and non-clinical domains. MT-BCIs can be used to control (neuro)prostheses or interact with video games, among many other applications. They can also be used to restore cognitive and motor abilities for stroke rehabilitation, or even improve athletic performance.Nonetheless, the expected transfer of MT-BCIs from the lab to the marketplace will be greatly impeded if all resources are allocated to technological aspects alone. We cannot neglect the Human End-User that sits in the centre of the loop. Indeed, self-regulating one’s brain activity through mental tasks to interact is an acquired skill that requires appropriate training. Yet several studies have shown that current training procedures do not enable MT-BCI users to reach adequate levels of performance. Therefore, one significant challenge for the community is that of improving end-user training.To do so, another fundamental challenge must be taken into account: we need to understand the processes that underlie MT-BCI performance and user learning. It is currently estimated that 10 to 30% of people cannot control an MT-BCI. These people are often referred to as “BCI inefficient”. But the concept of “BCI inefficiency” is debated. Does it really exist? Or, are low performances due to insufficient training, training procedures that are unsuited to these users or is the BCI data processing not sensitive enough? The currently available literature does not allow for a definitive answer to these questions as most published studies either include a limited number of participants (i.e., 10 to 20 participants) and/or training sessions (i.e., 1 or 2). We still have very little insight into what the MT-BCI learning curve looks like, and into which factors (including both user-related and machine-related factors) influence this learning curve. Finding answers will require a large number of experiments, involving a large number of participants taking part in multiple training sessions. It is not feasible for one research lab or even a small consortium to undertake such experiments alone. Therefore, an unprecedented coordinated effort from the research community is necessary.We are convinced that combining forces will allow us to characterise in detail MT-BCI user learning, and thereby provide a mandatory step toward transferring BCIs “out of the lab”. This is why we gathered an international, interdisciplinary consortium of BCI researchers from more than 20 different labs across Europe and Japan, including pioneers in the field. This collaboration will enable us to collect considerable amounts of data (at least 100 participants for 20 training sessions each) and establish a large open database. Based on this precious resource, we could then lead sound analyses to answer the previously mentioned questions. Using this data, our consortium could offer solutions on how to improve MT-BCI training procedures using innovative approaches (e.g., personalisation using intelligent tutoring systems) and technologies (e.g., virtual reality). The CHIST-ERA programme represents a unique opportunity to conduct this ambitious project, which will foster innovation in our field and strengthen our community

    Associative Vocabulary Learning: Development and Testing of Two Paradigms for the (Re-) Acquisition of Action- and Object-Related Words

    Get PDF
    Despite a growing number of studies, the neurophysiology of adult vocabulary acquisition is still poorly understood. One reason is that paradigms that can easily be combined with neuroscientfic methods are rare. Here, we tested the efficiency of two paradigms for vocabulary (re-) acquisition, and compared the learning of novel words for actions and objects. Cortical networks involved in adult native-language word processing are widespread, with differences postulated between words for objects and actions. Words and what they stand for are supposed to be grounded in perceptual and sensorimotor brain circuits depending on their meaning. If there are specific brain representations for different word categories, we hypothesized behavioural differences in the learning of action-related and object-related words. Paradigm A, with the learning of novel words for body-related actions spread out over a number of days, revealed fast learning of these new action words, and stable retention up to 4 weeks after training. The single-session Paradigm B employed objects and actions. Performance during acquisition did not differ between action-related and object-related words (time*word category: p = 0.01), but the translation rate was clearly better for object-related (79%) than for action-related words (53%, p = 0.002). Both paradigms yielded robust associative learning of novel action-related words, as previously demonstrated for object-related words. Translation success differed for action- and object-related words, which may indicate different neural mechanisms. The paradigms tested here are well suited to investigate such differences with neuroscientific means. Given the stable retention and minimal requirements for conscious effort, these learning paradigms are promising for vocabulary re-learning in brain-lesioned people. In combination with neuroimaging, neuro-stimulation or pharmacological intervention, they may well advance the understanding of language learning to optimize therapeutic strategies

    Event-Related Potential Correlates of Performance-Monitoring in a Lateralized Time-Estimation Task

    Get PDF
    Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations

    Food-specific response inhibition, dietary restraint and snack intake in lean and overweight/obese adults: a moderated-mediation model

    Get PDF
    Background/Objectives: The relationship between response inhibition and obesity is currently unclear. This may be because of inconsistencies in methodology, design limitations and the use of narrow samples. In addition, dietary restraint has not been considered, yet restraint has been reported to moderate performance on behavioural tasks of response inhibition. The aim of this study was to investigate performance on both a food-based and a neutral stimuli go/no-go task, which addresses current design limitations, in lean and overweight/obese adults. The moderating role of dietary restraint in the relationship between body composition, response inhibition and snack intake was also measured. Subjects/methods: Lean and overweight/obese, males and females (N=116) completed both a food-based and neutral category control go/no-go task, in a fully counterbalanced repeated-measures design. A bogus taste-test was then completed, followed by a self-report measure of dietary restraint. Results: PROCESS moderated-mediation analysis showed that overweight/obese, compared to lean, participants made more errors on the food-based (but not the neutral) go/no-go task, but only when they were low in dietary restraint. Performance on the food-based go/no-go task predicted snack intake across the sample. Increased intake in the overweight, low restrainers was fully mediated by increased errors on the food-based (but not the neutral) go/no-go task.Conclusions: Distinguishing between high and low restrained eaters in the overweight/obese population is crucial in future obesity research incorporating food-based go/no-go tasks. Poor response inhibition to food cues predicts overeating across weight groups, suggesting weight loss interventions and obesity prevention programmes should target behavioural inhibition training in such individuals

    The neurobiological link between OCD and ADHD

    Get PDF
    corecore