5,485 research outputs found

    PsiPsi - Vectors for Three Dimensional Models

    Full text link
    In this paper we apply the method of psi-vectors to three dimensional statistical models. This method gives the correspondence between the Bazhanov -- Baxter model and its vertex formulation. Considering psi-vectors for the Planar model, we obtain its self-duality.Comment: 11 pages, LaTeX, no figure

    Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water

    Get PDF
    International audienceMethanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO from post-combustion capture and autothermal reforming of natural gas or biogas. Underground gas storage of hydrogen and oxygen was used in connection with the electrolysis to enable the electrolyser to follow the variations in the power produced by renewables. Six plant configurations, each with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59-72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated, and the low-temperature waste heat is used for district heat production. This results in high total energy efficiencies (~90%) for the plants. The specific methanol costs for the six plants are in the range 11.8-25.3 €/GJ. The lowest cost is obtained by a plant using electrolysis of water, gasification of biomass and autothermal reforming of natural gas for syngas production

    Alpha-decay Rates of Yb and Gd in Solar Neutrino Detectors

    Full text link
    The α\alpha-decay rates for the nuclides 168,170,171,172,173,174,176^{168,170,171,172,173,174,176}Yb and 148,150,152,154^{148,150,152,154}Gd have been estimated from transmission probabilities in a systematic α\alpha-nucleus potential and from an improved fit to α\alpha-decay rates in the rare-earth mass region. Whereas α{\alpha}-decay of 152^{152}Gd in natural gadolinium is a severe obstacle for the use of gadolinium as a low-energy solar-neutrino detector, we show that α{\alpha}-decay does not contribute significantly to the background in a ytterbium detector. An extremely long α{\alpha}-decay lifetime of 168^{168}Yb is obtained from calculation, which may be close to the sensitivity limit in a low-background solar neutrino detector.Comment: 12 pages, 1 figure; An author name was correcte

    Tunneling and Drilling for OTEC Cold Water Pipes

    Get PDF
    This report summarizes the results of a study to determine the feasibility of using a tunnel or large-diameter drilled shaft as a conduit for transporting cold water from an ocean depth of 2000 ft to an ocean thermal energy conversion (OTEC) plant located on shore. The report identifies five possible cold water pipe (CWP) approaches that are dependent on the geologic formation and hydrology of the site. For this survey, the site under consideration is Keahole Point on the west coast of the big island of Hawaii. The site was chosen because of the easy access to deep cold water provided by the steep offshore slope, the proximity to air and sea transportation, and the availability of land. The survey concludes that although many site-specific factors must be considered, tunneling or drilling is in general a viable option for meeting the long-term OTEC cost goals. This study was carried out for the United States Department of Energy (DOE) by the Energy Technology Engineering Center (ETEC) as part of the OTEC Cold Water Pipe Technology program.Prepared for the United States Department of Energy, Ocean Engineering Technology Division, under Contract Number DE-AC03-76-SF00700, Task 43532-6530

    Strongly lensed SNe Ia in the era of LSST: observing cadence for lens discoveries and time-delay measurements

    Full text link
    The upcoming Large Synoptic Survey Telescope (LSST) will detect many strongly lensed Type Ia supernovae (LSNe Ia) for time-delay cosmography. This will provide an independent and direct way for measuring the Hubble constant H0H_0, which is necessary to address the current 4.4σ4.4 \sigma tension in H0H_0 between the local distance ladder and the early Universe measurements. We present a detailed analysis of different observing strategies for the LSST, and quantify their impact on time-delay measurement between multiple images of LSNe Ia. For this, we produced microlensed mock-LSST light curves for which we estimated the time delay between different images. We find that using only LSST data for time-delay cosmography is not ideal. Instead, we advocate using LSST as a discovery machine for LSNe Ia, enabling time delay measurements from follow-up observations from other instruments in order to increase the number of systems by a factor of 2 to 16 depending on the observing strategy. Furthermore, we find that LSST observing strategies, which provide a good sampling frequency (the mean inter-night gap is around two days) and high cumulative season length (ten seasons with a season length of around 170 days per season), are favored. Rolling cadences subdivide the survey and focus on different parts in different years; these observing strategies trade the number of seasons for better sampling frequency. In our investigation, this leads to half the number of systems in comparison to the best observing strategy. Therefore rolling cadences are disfavored because the gain from the increased sampling frequency cannot compensate for the shortened cumulative season length. We anticipate that the sample of lensed SNe Ia from our preferred LSST cadence strategies with rapid follow-up observations would yield an independent percent-level constraint on H0H_0.Comment: 25 pages, 22 figures; accepted for publication in A&

    Making the most of community energies:Three perspectives on grassroots innovation

    Get PDF
    Grassroots innovations for sustainability are attracting increasing policy attention. Drawing upon a wide range of empirical research into community energy in the UK, and taking recent support from national government as a case study, we apply three distinct analytical perspectives: strategic niche management; niche policy advocacy; and critical niches. Whilst the first and second perspectives appear to explain policy influence in grassroots innovation adequately, each also shuts out more transformational possibilities. We therefore argue that, if grassroots innovation is to realise its full potential, then we need to also pursue a third, critical niches perspective, and open up debate about more socially transformative pathways to sustainability

    Gravitational waves, black holes and cosmic strings in cylindrical symmetry

    Get PDF
    Gravitational waves in cylindrically symmetric Einstein gravity are described by an effective energy tensor with the same form as that of a massless Klein- Gordon field, in terms of a gravitational potential generalizing the Newtonian potential. Energy-momentum vectors for the gravitational waves and matter are defined with respect to a canonical flow of time. The combined energy-momentum is covariantly conserved, the corresponding charge being the modified Thorne energy. Energy conservation is formulated as the first law expressing the gradient of the energy as work and energy-supply terms, including the energy flux of the gravitational waves. Projecting this equation along a trapping horizon yields a first law of black-hole dynamics containing the expected term involving area and surface gravity, where the dynamic surface gravity is defined with respect to the canonical flow of time. A first law for dynamic cosmic strings also follows. The Einstein equation is written as three wave equations plus the first law, each with sources determined by the combined energy tensor of the matter and gravitational waves.Comment: 10 pages, revtex. Published version with further detail

    Architecture of a Silicon Strip Beam Position Monitor

    Full text link
    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12x10 cm2. Readout of the strips is provided through the use of VA1` ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.Comment: Submitted to TWEPP 201

    Charge neutralization in vacuum for non-conducting and isolated objects using directed low-energy electron and ion beams

    Get PDF
    We propose using ions and electrons of energy 1 eV–10 eV for neutralizing the charges on the non-conducting or isolated surfaces of high-sensitivity experiments. The mirror surfaces of the test masses of the laser interferometer gravitational observatory are used as an example of the implementation of this method. By alternatively directing beams of positive and negative charges towards the mirror surfaces, we ensure the neutralization of the total charge as well as the equalization of the surface charge distribution to within a few eV of the potential of the ground reference of the vacuum system. This method is compatible with operation in high vacuum, does not require measuring the potential of the mirrors and is expected not to damage sensitive optical surfaces
    • 

    corecore