316 research outputs found

    Two time constants for the binding of proteins to DNA from micromechanical data

    Get PDF
    Recent experimental advances allow the direct measurement of the force/extension behavior for DNA in the presence of strongly binding proteins. Such experiments reveal information about the cooperative mechanism of protein binding. We have studied the irreversible binding of such proteins to DNA using a simple simulation and present a method for estimating quantitative rate constants for the nucleation and growth of linear domains of proteins bound to DNA. Such rate constants also give information about the relative energetics of the two binding processes. We discuss our results in the context of recent data for the DNA-recA-ATPγs system, for which the nucleation time is 4.7 × 104 min per recA binding site and the total growth rate of each domain is 1400 recA/min

    Flagellin outer domain dimerization modulates motility in pathogenic and soil bacteria from viscous environments.

    Get PDF
    Flagellar filaments function as the propellers of the bacterial flagellum and their supercoiling is key to motility. The outer domains on the surface of the filament are non-critical for motility in many bacteria and their structures and functions are not conserved. Here, we show the atomic cryo-electron microscopy structures for flagellar filaments from enterohemorrhagic Escherichia coli O157:H7, enteropathogenic E. coli O127:H6, Achromobacter, and Sinorhizobium meliloti, where the outer domains dimerize or tetramerize to form either a sheath or a screw-like surface. These dimers are formed by 180° rotations of half of the outer domains. The outer domain sheath (ODS) plays a role in bacterial motility by stabilizing an intermediate waveform and prolonging the tumbling of E. coli cells. Bacteria with these ODS and screw-like flagellar filaments are commonly found in soil and human intestinal environments of relatively high viscosity suggesting a role for the dimerization in these environments

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Calcium-dependent dynamics of cadherin interactions at cell–cell junctions

    Get PDF
    Cadherins play a key role in the dynamics of cell–cell contact formation and remodeling of junctions and tissues. Cadherin–cadherin interactions are gated by extracellular Ca^(2+), which serves to rigidify the cadherin extracellular domains and promote trans junctional interactions. Here we describe the direct visualization and quantification of spatiotemporal dynamics of N-cadherin interactions across intercellular junctions in living cells using a genetically encodable FRET reporter system. Direct measurements of transjunctional cadherin interactions revealed a sudden, but partial, loss of homophilic interactions (τ = 1.17 ± 0.06 s^(−1)) upon chelation of extracellular Ca^(2+). A cadherin mutant with reduced adhesive activity (W2A) exhibited a faster, more substantial loss of homophilic interactions (τ = 0.86 ± 0.02 s^(−1)), suggesting two types of native cadherin interactions—one that is rapidly modulated by changes in extracellular Ca^(2+) and another with relatively stable adhesive activity that is Ca^(2+) independent. The Ca^(2+)-sensitive dynamics of cadherin interactions were transmitted to the cell interior where β-catenin translocated to N-cadherin at the junction in both cells. These data indicate that cadherins can rapidly convey dynamic information about the extracellular environment to both cells that comprise a junction

    Characterization of Engineered Actin Binding Proteins That Control Filament Assembly and Structure

    Get PDF
    Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate.We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs), are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively.From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly

    In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli

    Get PDF
    Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451–739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451–739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro

    Three-Dimensional Structure of N-Terminal Domain of DnaB Helicase and Helicase-Primase Interactions in Helicobacter pylori

    Get PDF
    Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 Å resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria

    Structural basis of the filamin A actin-binding domain interaction with F-actin

    Get PDF
    Cryo-EM reconstructions were deposited in the Electron Microscopy Data Bank with the following accession numbers: F20-F-actin-FLNaABD, EMD-7833; F20-F-actin-FLNaABD-Q170P, EMD-7832; F20-F-actin-FLNaABD-E254K, EMD-8918; Krios-F-actin-FLNaABD-E254K, EMD-7831. The corresponding FLNaABD-E254K filament model was deposited in the PDB with accession number 6D8C. Source data for F-actin-targeting analyses (Figs. 2c,d,g,h, 3b,c,e,f, 4d,e, 5c,d, and 6a,b) and co-sedimentation assays (Figs. 5g and 6d) are available with the paper online. Other data are available from the corresponding author upon reasonable request. We thank Z. Razinia for generating numerous FLNa constructs, S. Wu for expertise in using the Krios microscope, J. Lees for advice on model refinement, and M. Lemmon for helpful comments in preparing the manuscript. We also thank the Yale Center for Research Computing for guidance and use of the Farnam Cluster, as well as the staff at the YMS Center for Molecular Imaging for the use of the EM Core Facility. This work was funded by grants from the National Institutes of Health (R01-GM068600 (D.A.C.), R01-NS093704 (D.A.C.), R37-GM057247 (C.V.S.), R01-GM110530 (C.V.S.), T32-GM007324, T32-GM008283) and an award from American Heart Association (15PRE25700119 (D.V.I.)).Peer reviewedPostprin
    corecore