1,146 research outputs found

    Photon correlations in a two-site non-linear cavity system under coherent drive and dissipation

    Full text link
    We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum formulation: the master equation for the model, which takes into account both a coherent continuous drive and radiative as well as non-radiative dissipation channels, is solved analytically in steady state through a perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order coherence displays values between 0 and 1, and divides the diagram identified by the two energy scales of the system - the tunneling and the nonlinear Kerr interaction - into two distinct regions separated by a crossover. When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities and the emitted light is coherent. In the opposite limit, photon blockade sets in and the system shows an insulator-like state with photons locked on each cavity, identified by antibunching of emitted light.Comment: 9 pages, 4 figures, to appear in Phys. Rev.

    Nonlinear Interferometry via Fock State Projection

    Full text link
    We use a photon-number resolving detector to monitor the photon number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical non-linearities. Following a scheme by Bentley and Boyd [S.J. Bentley and R.W. Boyd, Optics Express 12, 5735 (2004)] we explore this effect to demonstrate interference patterns a factor of five smaller than the Rayleigh limit.Comment: 4 pages, 5 figure

    Generating functions for generalized binomial distributions

    Full text link
    In a recent article a generalization of the binomial distribution associated with a sequence of positive numbers was examined. The analysis of the nonnegativeness of the formal expressions was a key-point to allow to give them a statistical interpretation in terms of probabilities. In this article we present an approach based on generating functions that solves the previous difficulties: the constraints of nonnegativeness are automatically fulfilled, a complete characterization in terms of generating functions is given and a large number of analytical examples becomes available.Comment: PDFLaTex, 27 pages, 5 figure

    Squeezed Phonon States: Modulating Quantum Fluctuations of Atomic Displacements

    Full text link
    We study squeezed quantum states of phonons, which allow the possibility of modulating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of coherent phonon states. We calculate the corresponding expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, and also investigate the possibility of generating squeezed phonon states using a three-phonon parametric amplification process based on phonon-phonon interactions. Furthermore, we also propose a detection scheme based on reflectivity measurements.Comment: 4 pages, RevTeX. The previous entry had a wrong page number in the Journal-ref fiel

    Quantum Interference of Tunably Indistinguishable Photons from Remote Organic Molecules

    Full text link
    We demonstrate two-photon interference using two remote single molecules as bright solid-state sources of indistinguishable photons. By varying the transition frequency and spectral width of one molecule, we tune and explore the effect of photon distinguishability. We discuss future improvements on the brightness of single-photon beams, their integration by large numbers on chips, and the extension of our experimental scheme to coupling and entanglement of distant molecules

    Direct experimental evidence of free fermion antibunching

    Full text link
    Fermion antibunching was observed on a beam of free noninteracting neutrons. A monochromatic beam of thermal neutrons was first split by a graphite single crystal, then fed to two detectors, displaying a reduced coincidence rate. The result is a fermionic complement to the Hanbury Brown and Twiss effect for photons.Comment: 4 pages, 2 figure

    Long-range surface plasmon polariton excitation at the quantum level

    Full text link
    We provide the quantum mechanical description of the excitation of long-range surface plasmon polaritons (LRSPPs) on thin metallic strips. The excitation process consists of an attenuated-reflection setup, where efficient photon-to-LRSPP wavepacket-transfer is shown to be achievable. For calculating the coupling, we derive the first quantization of LRSPPs in the polaritonic regime. We study quantum statistics during propagation and characterize the performance of photon-to-LRSPP quantum state transfer for single-photons, photon-number states and photonic coherent superposition states.Comment: 9 pages, 6 figures, RevTeX4; Accepted versio

    Stability of 1-D Excitons in Carbon Nanotubes under High Laser Excitations

    Full text link
    Through ultrafast pump-probe spectroscopy with intense pump pulses and a wide continuum probe, we show that interband exciton peaks in single-walled carbon nanotubes (SWNTs) are extremely stable under high laser excitations. Estimates of the initial densities of excitons from the excitation conditions, combined with recent theoretical calculations of exciton Bohr radii for SWNTs, suggest that their positions do not change at all even near the Mott density. In addition, we found that the presence of lowest-subband excitons broadens all absorption peaks, including those in the second-subband range, which provides a consistent explanation for the complex spectral dependence of pump-probe signals reported for SWNTs.Comment: 4 pages, 4 figure

    Noncovariant gauge fixing in the quantum Dirac field theory of atoms and molecules

    Full text link
    Starting from the Weyl gauge formulation of quantum electrodynamics (QED), the formalism of quantum-mechanical gauge fixing is extended using techniques from nonrelativistic QED. This involves expressing the redundant gauge degrees of freedom through an arbitrary functional of the gauge-invariant transverse degrees of freedom. Particular choices of functional can be made to yield the Coulomb gauge and Poincar\'{e} gauge representations. The Hamiltonian we derive therefore serves as a good starting point for the description of atoms and molecules by means of a relativistic Dirac field. We discuss important implications for the ontology of noncovariant canonical QED due to the gauge freedom that remains present in our formulation.Comment: 8 pages, 0 figure
    corecore