1,337 research outputs found

    Exploring the randomness of Directed Acyclic Networks

    Get PDF
    The feed-forward relationship naturally observed in time-dependent processes and in a diverse number of real systems -such as some food-webs and electronic and neural wiring- can be described in terms of so-called directed acyclic graphs (DAGs). An important ingredient of the analysis of such networks is a proper comparison of their observed architecture against an ensemble of randomized graphs, thereby quantifying the {\em randomness} of the real systems with respect to suitable null models. This approximation is particularly relevant when the finite size and/or large connectivity of real systems make inadequate a comparison with the predictions obtained from the so-called {\em configuration model}. In this paper we analyze four methods of DAG randomization as defined by the desired combination of topological invariants (directed and undirected degree sequence and component distributions) aimed to be preserved. A highly ordered DAG, called \textit{snake}-graph and a Erd\:os-R\'enyi DAG were used to validate the performance of the algorithms. Finally, three real case studies, namely, the \textit{C. elegans} cell lineage network, a PhD student-advisor network and the Milgram's citation network were analyzed using each randomization method. Results show how the interpretation of degree-degree relations in DAGs respect to their randomized ensembles depend on the topological invariants imposed. In general, real DAGs provide disordered values, lower than the expected by chance when the directedness of the links is not preserved in the randomization process. Conversely, if the direction of the links is conserved throughout the randomization process, disorder indicators are close to the obtained from the null-model ensemble, although some deviations are observed.Comment: 13 pages, 5 figures and 5 table

    Dyadic Predictors of Child Body Shame in a Polish and Italian Sample

    Get PDF
    The present study aimed at assessing the predictors (related to the functioning of a parent-child dyad) of child body shame. Therefore, in the main analysis we examined relationships among child body shame, child perfectionism, child body dissatisfaction, parent body shame, parent perfectionism, and parent body dissatisfaction. In our main hypothesis we assumed that higher levels of the abovementioned parent functioning-related variables would be associated with higher child body shame after accounting for the effects of the foregoing child functioning-related variables. The analysis finally included complete data from 420 participants, i.e., a 115 Polish and 95 Italian parent-child dyad. Participants completed: (a) child: the Objectified Body Consciousness Scale for Youth, the Child-Adolescent Perfectionism Scale, the Children’s Body Image Scale/the Figure Rating Scale; (b) parent: the Objectified Body Consciousness Scale, the Frost Multidimensional Perfectionism Scale, and the Contour Drawing Rating Scale. The results of a correlational analysis show that in both the Polish and Italian samples, the higher the level of child body shame, the higher the level of the following variables: child perfectionism, child body dissatisfaction, parent perfectionism, and parent body dissatisfaction. Interestingly, the only insignificant relationship in both samples is the association between body shame in both members of the child-parent dyad. Moreover, all steps of the regressions were significant in both Polish and Italian samples. It turned out that only in the Italian sample were all predictors significantly associated with a child’s body shame (in the Polish sample there was no significant association between child’s body shame and parent’s perfectionism). To sum up, the above studies show the importance of considering the functioning of the parent-child dyad in understanding child body shame. These findings suggest that parents’ attitudes toward their bodies and their beliefs about an ideal self should be taken into account when planning interventions to improve children’s and adolescents’ attitudes toward their bodies. This is so because it is possible for children to internalize their parents’ beliefs about how to look and how critical one should be of themselves, which can result in strong body shame when they are not perfect enough against the internalized ideal. Therefore, it is also necessary to make parents aware that children’s attitude toward their body is often a reflection of parents’ attitude toward the body

    Beating noise with abstention in state estimation

    Get PDF
    We address the problem of estimating pure qubit states with non-ideal (noisy) measurements in the multiple-copy scenario, where the data consists of a number N of identically prepared qubits. We show that the average fidelity of the estimates can increase significantly if the estimation protocol allows for inconclusive answers, or abstentions. We present the optimal such protocol and compute its fidelity for a given probability of abstention. The improvement over standard estimation, without abstention, can be viewed as an effective noise reduction. These and other results are exemplified for small values of N. For asymptotically large N, we derive analytical expressions of the fidelity and the probability of abstention, and show that for a fixed fidelity gain the latter decreases with N at an exponential rate given by a Kulback-Leibler (relative) entropy. As a byproduct, we obtain an asymptotic expression in terms of this very entropy of the probability that a system of N qubits, all prepared in the same state, has a given total angular momentum. We also discuss an extreme situation where noise increases with N and where estimation with abstention provides a most significant improvement as compared to the standard approach

    Topological reversibility and causality in feed-forward networks

    Full text link
    Systems whose organization displays causal asymmetry constraints, from evolutionary trees to river basins or transport networks, can be often described in terms of directed paths (causal flows) on a discrete state space. Such a set of paths defines a feed-forward, acyclic network. A key problem associated with these systems involves characterizing their intrinsic degree of path reversibility: given an end node in the graph, what is the uncertainty of recovering the process backwards until the origin? Here we propose a novel concept, \textit{topological reversibility}, which rigorously weigths such uncertainty in path dependency quantified as the minimum amount of information required to successfully revert a causal path. Within the proposed framework we also analytically characterize limit cases for both topologically reversible and maximally entropic structures. The relevance of these measures within the context of evolutionary dynamics is highlighted.Comment: 9 pages, 3 figure

    Forced expression of Lmx1b enhances differentiation of mouse ES cells into serotonergic neurons

    Get PDF
    The LIM homeodomain transcription factor Lmx1b is a key factor in the specification of the serotonergic neurotransmitter phenotype. Here, we explored the capacity of Lmx1b to direct differentiation of mouse embryonic stem (mES) cells into serotonergic neurons. mES cells stably expressing human Lmx1b were generated by lentiviral vector infection. Clones expressing Lmx1b at a low level showed increased neurogenesis and elevated production of neurons expressing serotonin, serotonin transporter, Tryptophan hydroxylase 2, and transcription factor Pet1, the landmarks of serotonergic differentiation. To explore the role of Lmx1b in the specification of the serotonin neurotransmission phenotype further, a conditional system making use of a floxed inducible vector targeted into the ROSA26 locus and a hormone-dependent Cre recombinase was engineered. This novel strategy was tested with the reporter gene encoding human placental alkaline phosphatase, and demonstrated its capacity to drive transgene expression in nestin+ neural progenitors and in Tuj1+ neurons. When it was applied to the inducible expression of human Lmx1b, it resulted in elevated expression of serotonergic markers. Treatment of neural precursors with the floor plate signal Sonic hedgehog further enhanced differentiation of Lmx1b-overexpressing neural progenitors into neurons expressing 5-HT, serotonin transporter, Tryptophan hydroxylase 2 and Pet1, when compared to Lmx1b-non expressing progenitors. Together, our results demonstrate the capacity of Lmx1b to specify a serotonin neurotransmitter phenotype when overexpressed in mESC-derived neural progenitors

    Expansion history and f(R) modified gravity

    Get PDF
    We attempt to fit cosmological data using f(R)f(R) modified Lagrangians containing inverse powers of the Ricci scalar varied with respect to the metric. While we can fit the supernova data well, we confirm the at1/2a\propto t^{1/2} behaviour at medium to high redshifts reported elsewhere and argue that the easiest way to show that this class of models are inconsistent with the data is by considering the thickness of the last scattering surface. For the best fit parameters to the supernova data, the simplest 1/R model gives rise to a last scattering surface of thickness Δz530\Delta z\sim 530, inconsistent with observations.Comment: accepted in JCAP, presentation clarified, results and conclusions unchange

    Nonlinear Jaynes-Cummings model of atom-field interaction

    Get PDF
    Interaction of a two-level atom with a single mode of electromagnetic field including Kerr nonlinearity for the field and intensity-dependent atom-field coupling is discussed. The Hamiltonian for the atom-field system is written in terms of the elements of a closed algebra, which has SU(1,1) and Heisenberg-Weyl algebras as limiting cases. Eigenstates and eigenvalues of the Hamiltonian are constructed. With the field being in a coherent state initially, the dynamical behaviour of atomic-inversion, field-statistics and uncertainties in the field quadratures are studied. The appearance of nonclassical features during the evolution of the field is shown. Further, we explore the overlap of initial and time-evolved field states.Comment: 14 pages, 6 figures is PS forma

    Time-Frequency based Feature Selection for Discrimination of non stationary Biosignals.

    Get PDF
    This research proposes a generic methodology for dimensionality reduction upon time-frequency representations applied to the classification of different types of biosignals. The methodology directly deals with the highly redundant and irrelevant data contained in these representations, combining a first stage of irrelevant data removal by variable selection, with a second stage of redundancy reduction using methods based on linear transformations. The study addresses two techniques that provided a similar performance: the first one is based on the selection of a set of the most relevant time?frequency points, whereas the second one selects the most relevant frequency bands. The first methodology needs a lower quantity of components, leading to a lower feature space; but the second improves the capture of the time-varying dynamics of the signal, and therefore provides a more stable performance. In order to evaluate the generalization capabilities of the methodology proposed it has been applied to two types of biosignals with different kinds of non-stationary behaviors: electroencephalographic and phonocardiographic biosignals. Even when these two databases contain samples with different degrees of complexity and a wide variety of characterizing patterns, the results demonstrate a good accuracy for the detection of pathologies, over 98%.The results open the possibility to extrapolate the methodology to the study of other biosignals

    Diversity, competition, extinction: the ecophysics of language change

    Get PDF
    As early indicated by Charles Darwin, languages behave and change very much like living species. They display high diversity, differentiate in space and time, emerge and disappear. A large body of literature has explored the role of information exchanges and communicative constraints in groups of agents under selective scenarios. These models have been very helpful in providing a rationale on how complex forms of communication emerge under evolutionary pressures. However, other patterns of large-scale organization can be described using mathematical methods ignoring communicative traits. These approaches consider shorter time scales and have been developed by exploiting both theoretical ecology and statistical physics methods. The models are reviewed here and include extinction, invasion, origination, spatial organization, coexistence and diversity as key concepts and are very simple in their defining rules. Such simplicity is used in order to catch the most fundamental laws of organization and those universal ingredients responsible for qualitative traits. The similarities between observed and predicted patterns indicate that an ecological theory of language is emerging, supporting (on a quantitative basis) its ecological nature, although key differences are also present. Here we critically review some recent advances lying and outline their implications and limitations as well as open problems for future research.Comment: 17 Pages. A review on current models from statistical Physics and Theoretical Ecology applied to study language dynamic
    corecore