1,903 research outputs found
Interrupting the social amplification of risk process: a case study in collective emissions reduction
One of the main approaches we have for studying the progressive divergence of understandings around a risk issue is that of social risk amplification. This article describes a case study of a particular environmental contaminant, a chemical flame retardant that could be interpreted as having produced a risk amplifying process. It describes in particular how a group of industrial organizations acted collectively to reduce emissions of this contaminant, in an apparent attempt to avert regulation and boycotts—that is, to intercept the social amplification process and avoid its secondary effects. The aim of the study was to investigate the constitutive qualities of this collective action: the qualities that defined it and made it effective in the eyes of those involved. These include institutionalisation and independence, the ability to confer individual as well as collective benefit, the capacity to attract (rather than avoid) criticism, and the ‘branding’ that helps communicate what otherwise appear to be a set of unconnected, local actions. Although the risk amplification framework has been criticised for implying that there is some externally given risk level that is subsequently amplified, it does appear to capture the mentality of actors involved in issues of this kind. They talk and act as though they believe they are participants in a risk amplification process
Key dating features for timber-framed dwellings in Surrey
This article is made available through the Brunel Open Access Publishing Fund. Copyright @ The Vernacular Architecture Group 2013. MORE OpenChoice articles are open access and distributed under the terms of the Creative Commons Attribution License 3.0.The main component of the Surrey Dendrochronology Project is the accurate dating of 177 ‘dwellings’, nearly all by tree-ring analysis. The dates are used to establish date ranges for 52 ‘key features’, which cover many aspects of timber-framing from building type to details of carpentry. It is shown that changes of method and fashion were in many cases surprisingly rapid, almost abrupt in historical terms. Previous dating criteria for timber-framed dwellings in the county have been refined and new criteria introduced. Clusters of change from the 1440s and the 1540s are shown and some possible historical links suggested.The Heritage Lottery Fund, the Domestic Buildings Research Group (Surrey), the Surrey Archaeological Society and the historical societies of Charlwood, Farnham and Nutfield
A Proper Motion Survey for White Dwarfs with the Wide Field Planetary Camera 2
We have performed a search for halo white dwarfs as high proper motion
objects in a second epoch WFPC2 image of the Groth-Westphal strip. We identify
24 high proper motion objects with mu > 0.014 ''/yr. Five of these high proper
motion objects are identified as strong white dwarf candidates on the basis of
their position in a reduced proper motion diagram. We create a model of the
Milky Way thin disk, thick disk and stellar halo and find that this sample of
white dwarfs is clearly an excess above the < 2 detections expected from these
known stellar populations. The origin of the excess signal is less clear.
Possibly, the excess cannot be explained without invoking a fourth galactic
component: a white dwarf dark halo. We present a statistical separation of our
sample into the four components and estimate the corresponding local white
dwarf densities using only the directly observable variables, V, V-I, and mu.
For all Galactic models explored, our sample separates into about 3 disk white
dwarfs and 2 halo white dwarfs. However, the further subdivision into the thin
and thick disk and the stellar and dark halo, and the subsequent calculation of
the local densities are sensitive to the input parameters of our model for each
Galactic component. Using the lowest mean mass model for the dark halo we find
a 7% white dwarf halo and six times the canonical value for the thin disk white
dwarf density (at marginal statistical significance), but possible systematic
errors due to uncertainty in the model parameters likely dominate these
statistical error bars. The white dwarf halo can be reduced to around 1.5% of
the halo dark matter by changing the initial mass function slightly. The local
thin disk white dwarf density in our solution can be made consistent with the
canonical value by assuming a larger thin disk scaleheight of 500 pc.Comment: revised version, accepted by ApJ, results unchanged, discussion
expande
Microlensing as a probe of the Galactic structure; 20 years of microlensing optical depth studies
Microlensing is now a very popular observational astronomical technique. The
investigations accessible through this effect range from the dark matter
problem to the search for extra-solar planets. In this review, the techniques
to search for microlensing effects and to determine optical depths through the
monitoring of large samples of stars will be described. The consequences of the
published results on the knowledge of the Milky-Way structure and its dark
matter component will be discussed. The difficulties and limitations of the
ongoing programs and the perspectives of the microlensing optical depth
technique as a probe of the Galaxy structure will also be detailed.Comment: Accepted for publication in General Relativity and Gravitation.
General Relativity and Gravitation in press (2010) 0
Curvature energy effects on strange quark matter nucleation at finite density
We consider the effects of the curvature energy term on thermal strange quark
matter nucleation in dense neutron matter. Lower bounds on the temperature at
which this process can take place are given and compared to those without the
curvature term.Comment: PlainTex, 6 pp., IAG-USP Rep.5
The contribution of Oxygen-Neon white dwarfs to the MACHO content of the Galactic Halo
The interpretation of microlensing results towards the Large
Magellanic Cloud (LMC) still remains controversial. White dwarfs have been
proposed to explain these results and, hence, to contribute significantly to
the mass budget of our Galaxy. However, several constraints on the role played
by regular carbon-oxygen white dwarfs exist. Massivewhite dwarfs are thought to
be made of a mixture of oxygen and neon. Correspondingly, their cooling rate is
larger than those of typical carbon-oxygen white dwarfs and they fade to
invisibility in short timescales. Consequently, they constitute a good
candidate for explaining the microlensing results. Here, we examine in detail
this hypothesis by using the most recent and up-to-date cooling tracks for
massive white dwarfs and a Monte Carlo simulator which takes into account the
most relevant Galactic inputs. We find that oxygen-neon white dwarfs cannot
account for a substantial fraction of the microlensing depth towards the LMC,
independently of the adopted initial mass function, although some microlensing
events could be due to oxygen--neon white dwarfs. The white dwarf population
contributes at most a 5% to the mass of the Galactic halo.Comment: 10 pages, 4 figures. Accepted for publication in Astronomy &
Astrophysic
Robust, data-driven inference in non-linear cosmostatistics
We discuss two projects in non-linear cosmostatistics applicable to very
large surveys of galaxies. The first is a Bayesian reconstruction of galaxy
redshifts and their number density distribution from approximate, photometric
redshift data. The second focuses on cosmic voids and uses them to construct
cosmic spheres that allow reconstructing the expansion history of the Universe
using the Alcock-Paczynski test. In both cases we find that non-linearities
enable the methods or enhance the results: non-linear gravitational evolution
creates voids and our photo-z reconstruction works best in the highest density
(and hence most non-linear) portions of our simulations.Comment: 14 pages, 10 figures. Talk given at "Statistical Challenges in Modern
Astronomy V," held at Penn Stat
Symmetry structure and phase transitions
We study chiral symmetry structure at finite density and temperature in the
presence of external magnetic field and gravity, a situation relevant in the
early Universe and in the core of compact stars.
We then investigate the dynamical evolution of phase transition in the
expanding early Universe and possible formation of quark nuggets and their
survival.Comment: Plenary talk given at the 4th. ICPAQGP held at Jaipur, India from Nov
26-30, 2001.laTex 2e file with 8 ps figures and 12 page
Possible Cosmological Implications of the Quark-Hadron Phase Transition
We study the quark-hadron phase transition within an effective model of QCD,
and find that in a reasonable range of the main parameters of the model, bodies
with quark content between and 10 solar masses can have been formed
in the early universe. In addition, we show that a significant amount of
entropy is released during the transition. This may imply the existence of a
higher baryon number density than what is usually expected at temperatures
above the QCD scale. The cosmological QCD transition may then provide a natural
way for decreasing the high baryon asymmetry created by an Affleck-Dine like
mechanism down to the value required by primordial nucleosynthesis.Comment: 19 pages, LaTeX, 5 Postscript figures included. Submitted to Journal
of Physics
A new clue to the transition mechanism between optical high and low states of the supersoft X-ray source RX J0513.9-6951, implied from the recurrent nova CI Aquilae 2000 outburst model
We have found a new clue to the transition mechanism between optical
high/X-ray off and optical low/X-ray on states of the LMC supersoft X-ray
source RX J0513.9-6951. A sharp ~1 mag drop is common to the CI Aql 2000
outburst. These drops are naturally attributed to cessation of optically thick
winds on white dwarfs. A detailed light-curve analysis of CI Aql indicates that
the size of a disk drastically shrinks when the wind stops. This causes ~1-2
mag drop in the optical light curve. In RX J0513.9-6951, the same mechanism
reproduces sharp ~1 mag drop from optical high to low states. We predict this
mechanism also works on the transition from low to high states. Interaction
between the wind and the companion star attenuates the mass transfer and drives
full cycles of low and high states.Comment: 9 pages including 5 figures, to appear in the Astrophysical Journa
- …