113 research outputs found
Patterns of antibiotic use in hospital-acquired infections.
BACKGROUND: Monitoring the use of antimicrobials in hospitalized patients is critical owing to the risk of resistance selection. This study aimed to describe the patterns of antimicrobial prescription for the most frequent healthcare-associated infections (HAIs) in France, relating drugs and microbiological data. METHODS: We used data from the 2017 point-prevalence survey of HAI and antimicrobial use in France, a large nationally representative sample survey of inpatients. We sought unambiguous correspondence between individual indications of antibiotic regimen and HAI sites to determine which molecules were directed towards which pathogen, considering its resistance profile. RESULTS: Among 75,698 adult patients from 401 hospitals, 5.1% had an active HAI and 4.3% were being treated for an HAI. The two most frequent antibiotic indications were lower respiratory tract (LRTI, 27.7%) and urinary tract infections (UTI, 18.4%). For LRTI, the most prescribed antibiotic was amoxicillin-clavulanic acid (27.6%) and most frequently isolated pathogens (each accounting for around 17% of isolates) were Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Meticillin-resistant S. aureus LRTI was more likely to be treated with linezolid. For UTI, ofloxacin, ceftriaxone, amoxicillin/co-amoxiclav were most-prescribed (∼13% each) and E. coli predominantly isolated (52.0%). Extended-spectrum beta-lactamase-producing E. coli UTI were more likely treated by fosfomycin, pivmecillinam or ertapenem. CONCLUSIONS: This study provides a baseline of antimicrobial use in relation to microbiological information in patients with the most common HAIs. These results can serve to direct future efforts in antimicrobial stewardship. Our work could be extended to a broader population, notably in Europe where similar surveys have been conducted
Recommended from our members
Comparison of governance approaches for the control of antimicrobial resistance: Analysis of three European countries
Policy makers and governments are calling for coordination to address the crisis emerging from the ineffectiveness of current antibiotics and stagnated pipe-line of new ones – antimicrobial resistance (AMR). Wider contextual drivers and mechanisms are contributing to shifts in governance strategies in health care, but are national health system approaches aligned with strategies required to tackle antimicrobial resistance? This article provides an analysis of governance approaches within healthcare systems including: priority setting, performance monitoring and accountability for AMR prevention in three European countries: England, France and Germany. Advantages and unresolved issues from these different experiences are reported, concluding that mechanisms are needed to support partnerships between healthcare professionals and patients with democratized decision-making and accountability via collaboration. But along with this multi-stakeholder approach to governance, a balance between regulation and persuasion is needed
Physical performance and glycemic control under SGLT-2-inhibitors in patients with type 2 diabetes and established atherosclerotic cardiovascular diseases or high cardiovascular risk (PUSH): Design of a 4-week prospective observational study.
Background
Type 2 diabetes (T2D) is associated with limitation in physical performance. Results from animal studies report enhancement of physical performance in T2D rodents treated with sodium glucose cotransporter 2 inhibitors (SGLT2is). However, in human patients with T2D and established atherosclerotic cardiovascular disease (ASCVD) or high cardiovascular risk, the impact of guideline directed SGLT2i medication on physical performance has not been sufficiently examined.
Objectives
The main objectives of this study are thus firstly, to assess the changes in physical performance after 4 weeks of exercise therapy in patients with established ASCVD or high cardiovascular risk categorized into three groups according to their glycemic control at baseline. Secondly, to investigate the association of glycemic control at baseline and new guideline directed antidiabetic treatment (inadequate glycemic control and diabetes + new SGLT2i vs. adequate glycemic control and diabetes vs. no diabetes) with change in physical performance.
Methods and design
This is a 4-week prospective observational study of 450 participants with established ASCVD or high cardiovascular risk with or without T2D and without previous SGLT2i medication undergoing exercise therapy during inpatient rehabilitation in a single center in Switzerland. Upon admission, participants are categorized into 3 groups of 150 participants each according to their glycemic control. Group I consisting of participants with inadequately controlled T2D defined as mean fasting plasma glucose (FPG) of ≥7 mmol/L, who are consequently administered new treatment with an SGLT2i. Group II comprises of participants with adequately controlled T2D with mean FPG of <7 mmol/L requiring no antidiabetic medication change. Group III consists of participants with no diabetes and mean FPG of ≤ 5.5 mmol/L. Primary outcomes are 6-min walk distance and rate of perceived exertion. Secondary outcomes are echocardiographic parameters (left ventricular mass index; global longitudinal strain average; end-diastolic volume), fatigue, muscle, metabolic, and anthropometric measures.
Ethics and dissemination
This study is conducted in accordance with the Declaration of Helsinki with ethical approval from the Cantonal Ethical Commission of Bern, Switzerland. The results will be published in a peer-reviewed journal. The implementation and reporting will be according to the SPIRIT guidelines.
Study protocol registration
https://www.clinicaltrials.gov/, identifier: NCT03422263
AGR2, a unique tumor-associated antigen, is a promising candidate for antibody targeting.
Anterior gradient 2 (AGR2), a protein disulfide isomerase, shows two subcellular localizations: intracellular (iAGR2) and extracellular (eAGR2). In healthy cells that express AGR2, the predominant form is iAGR2, which resides in the endoplasmic reticulum. In contrast, cancer cells secrete and express eAGR2 on the cell surface. We wanted to test if AGR2 is a cancer-specific tumor-associated antigen. We utilized two AGR2 antibodies, P3A5 and P1G4, for in vivo tumor localization and tumor growth inhibition. The monoclonal antibodies recognized both human AGR2 and mouse Agr2. Biodistribution experiments using a syngeneic mouse model showed high uptake of P3A5 AGR2 antibody in xenografted eAgr2+ pancreatic tumors, with limited uptake in normal tissues. In implanted human patient-derived eAGR2+ pancreatic cancer xenografts, tumor growth inhibition was evaluated with antibodies and Gemcitabine (Gem). Inhibition was more potent by P1G4 + Gem combination than Gem alone or P3A5 + Gem. We converted these two antibodies to human:mouse chimeric forms: the constructed P3A5 and P1G4 chimeric mVLhCκ and mVHhCγ (γ1, γ2, γ4) genes were inserted in a single mammalian expression plasmid vector, and transfected into human 293F cells. Expressed human:mouse chimeric IgG1, IgG2 and IgG4 antibodies retained AGR2 binding. Increase in IgG yield by transfected cells could be obtained with serial transfection of vectors with different drug resistance. These chimeric antibodies, when incubated with human blood, effectively lysed eAGR2+ PC3 prostate cancer cells. We have, thus, produced humanized anti-AGR2 antibodies that, after further testing, might be suitable for treatment against a variety of eAGR2+ solid tumors.University of Washington CoMotion FundNCI-EDRN Biomarker Developmental Lab grant U01CA111244, and DoD W81XWH-16-1-0614
Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells
Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer
Molecular Analysis of Precursor Lesions in Familial Pancreatic Cancer
PMCID: PMC3553106This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma.
© 2014 Haider et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.Improved usage of the repertoires of pancreatic ductal adenocarcinoma (PDAC) profiles is crucially needed to guide the development of predictive and prognostic tools that could inform the selection of treatment options
Antimicrobial Stewardship from Policy to Practice: Experiences from UK Antimicrobial Pharmacists
Antimicrobial stewardship in the UK has evolved dramatically in the last 15 years. Factors driving this include initial central funding for specialist pharmacists and mandatory reductions in healthcare-associated infections (particularly Clostridium difficile infection). More recently, the introduction of national stewardship guidelines, and an increased focus on stewardship as part of the UK five-year antimicrobial resistance strategy, have accelerated and embedded developments. Antimicrobial pharmacists have been instrumental in effecting changes at an organizational and national level. This article describes the evolution of the antimicrobial pharmacist role, its impact, the progress toward the actions listed in the five-year resistance strategy, and novel emerging areas in stewardship in the UK
ER stress protein AGR2 precedes and is involved in the regulation of pancreatic cancer initiation
The work was supported by a grant A12008 from CR-UK (L. Dumartin, N.R. Lemoine and T. Crnogorac-Jurcevic)
The Anti-Tumor Effect of HDAC Inhibition in a Human Pancreas Cancer Model Is Significantly Improved by the Simultaneous Inhibition of Cyclooxygenase 2
Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.Peer reviewe
- …