3,259 research outputs found

    Considering the role of cognitive control in expert performance

    Get PDF
    © 2014, Springer Science+Business Media Dordrecht. Dreyfus and Dreyfus’ (1986) influential phenomenological analysis of skill acquisition proposes that expert performance is guided by non-cognitive responses which are fast, effortless and apparently intuitive in nature. Although this model has been criticised (e.g., by Breivik Journal of Philosophy of Sport, 34, 116–134 2007, Journal of the Philosophy of Sport, 40, 85–106 2013; Eriksen 2010; Montero Inquiry:An interdisciplinary Journal of Philosophy, 53, 105–122 2010; Montero and Evans 2011) for over-emphasising the role that intuition plays in facilitating skilled performance, it does recognise that on occasions (e.g., when performance goes awry for some reason) a form of ‘detached deliberative rationality’ may be used by experts to improve their performance. However, Dreyfus and Dreyfus (1986) see no role for calculative problem solving or deliberation (i.e., drawing on rules or mental representations) when performance is going well. In the current paper, we draw on empirical evidence, insights from athletes, and phenomenological description to argue that ‘continuous improvement’ (i.e., the phenomenon whereby certain skilled performers appear to be capable of increasing their proficiency even though they are already experts; Toner and Moran 2014) among experts is mediated by cognitive (or executive) control in three distinct sporting situations (i.e., in training, during pre-performance routines, and while engaged in on-line skill execution). We conclude by arguing that Sutton et al. Journal of the British Society for Phenomenology, 42, 78–103 (2011) ‘applying intelligence to the reflexes’ (AIR) approach may help to elucidate the process by which expert performers achieve continuous improvement through analytical/mindful behaviour during training and competition

    Ground-Level Intelligence: Action-Oriented Representation and the Dynamics of the Background

    Get PDF
    First paragraph: Studies of embodied intelligence have often tended to focus on the essentially responsive aspects of bodily expertise (for example, catching a ball once it has been hit into the air). But skilled sportsmen and sportswomen, actors and actresses, dancers, orators, and other performers often execute ritual-like gestures or other fixed action routines as performance-optimizing elements in their pre-performance preparations, especially when daunting or unfamiliar conditions are anticipated. For example, a recent movie (The King's Speech) and a book of memories (Logue and Conradi, 2010) have revealed that, just before broadcasting his historic announcement that the United Kingdom was entering the Second World War, King George VI furiously repeated certain tongue twisters in a resolute effort to overcome his relentless stutter. Such ritualized actions don't merely change the causal relations between performers and their physical environments (although this may well be part of their function); they provide performers with the practical scaffolds that summon more favourable contexts for their accomplishments, by uncovering viable landscapes for effective action rather than unassailable barricades of frightening obstacles. In other words, while the kinds of embodied skills that have occupied many recent theorists serve to attune behaviour to an actual context of activity, whether that context is favourable or not, preparatory embodied routines actively refer to certain potential (and thus non-actual) contexts of a favourable nature that those routines themselves help to bring about, indicating the possibilities of actions disclosed by the desired context. As we shall see, this sort of transformative event, which is exemplified by, but not confined to, the ritualized gestures and routines of skilled performers, is a regular occurrence in everyday skilled activity, not the crowning achievement of a few talented individuals; so the capacity in question belongs centrally to our ordinary suite of bodily skills. The theoretical ramifications of that embodied capacity are the topic of this paper

    NEXUS/Physics: An interdisciplinary repurposing of physics for biologists

    Get PDF
    In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life sciences students, with the goal of helping students build general, multi-discipline scientific competencies. In order to do this, our two-semester NEXUS/Physics course sequence is positioned as a second year course so students will have had some exposure to basic concepts in biology and chemistry. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this. It extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy, and includes a serious discussion of random vs. coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.Comment: 12 page

    Dielectric and thermal relaxation in the energy landscape

    Full text link
    We derive an energy landscape interpretation of dielectric relaxation times in undercooled liquids, comparing it to the traditional Debye and Gemant-DiMarzio-Bishop pictures. The interaction between different local structural rearrangements in the energy landscape explains qualitatively the recently observed splitting of the flow process into an initial and a final stage. The initial mechanical relaxation stage is attributed to hopping processes, the final thermal or structural relaxation stage to the decay of the local double-well potentials. The energy landscape concept provides an explanation for the equality of thermal and dielectric relaxation times. The equality itself is once more demonstrated on the basis of literature data for salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems, Molveno 2006, submitted to Philosophical Magazin

    Light scattering spectra of supercooled molecular liquids

    Full text link
    The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.Comment: 12 page

    Role of methylotrophy during symbiosis between Methylobacterium nodulans and Crotalaria podocarpa

    Get PDF
    Some rare leguminous plants of the genus Crotalaria are specifically nodulated by the methylotrophic bacterium Methylobacterium nodulans. In this study, the expression and role of bacterial methylotrophy were investigated during symbiosis between M. nodulans, strain ORS 2060(T), and its host legume, Crotalaria podocarpa. Using lacZ fusion to the mxaF gene, we showed that the methylotroph genes are expressed in the root nodules, suggesting methylotrophic activity during symbiosis. In addition, loss of the bacterial methylotrophic function significantly affected plant development. Indeed, inoculation of M. nodulans nonmethylotroph mutants in C. podocarpa decreased the total root nodule number per plant up to 60%, decreased the whole-plant nitrogen fixation capacity up to 42%, and reduced the total dry plant biomass up to 46% compared with the wild-type strain. In contrast, inoculation of the legume C. podocarpa with nonmethylotrophic mutants complemented with functional mxa genes restored the symbiotic wild phenotype. These results demonstrate the key role of methylotrophy during symbiosis between M. nodulans and C. podocarpa

    Report on perceived policy needs and decision contexts

    Get PDF
    Adaptation to climate change is a new challenge for existing institutions and decision-making processes. In order to assess what form this challenge takes for decision-makers, we conducted interviews and a policy review to determine the perceived policy needs in Austria, Finland, France, Italy, Poland, Romania, Spain and the United Kingdom. In each country, interviews are conducted at the national level and the sub-national (state) level if the national level is not sufficiently active in adaptation planning yet. We focus on general adaptation policy as well as specific sectors for each country, in line with the distribution of MEDIATION case studies. Different countries are at different stages of developing adaptation policy, but the underlying needs are similar across them. We group the needs into nine categories: inter-agency coordination, multi-level governance, mainstreaming, awareness-raising, coping with uncertainty, research needs, tools and information access, financial and human resources, and political commitment. We also look at suggestions for the EU's role in coordinating adaptation policy

    Cognition in Context: Phenomenology, Situated Robotics and the Frame Problem

    Get PDF
    The frame problem is the difficulty of explaining how non-magical systems think and act in ways that are adaptively sensitive to context-dependent relevance. Influenced centrally by Heideggerian phenomenology, Hubert Dreyfus has argued that the frame problem is, in part, a consequence of the assumption (made by mainstream cognitive science and artificial intelligence) that intelligent behaviour is representation-guided behaviour. Dreyfus’ Heideggerian analysis suggests that the frame problem dissolves if we reject representationalism about intelligence and recognize that human agents realize the property of thrownness (the property of being always already embedded in a context). I argue that this positive proposal is incomplete until we understand exactly how the properties in question may be instantiated in machines like us. So, working within a broadly Heideggerian conceptual framework, I pursue the character of a representationshunning thrown machine. As part of this analysis, I suggest that the frame problem is, in truth, a two-headed beast. The intra-context frame problem challenges us to say how a purely mechanistic system may achieve appropriate, flexible and fluid action within a context. The inter-context frame problem challenges us to say how a purely mechanistic system may achieve appropriate, flexible and fluid action in worlds in which adaptation to new contexts is open-ended and in which the number of potential contexts is indeterminate. Drawing on the field of situated robotics, I suggest that the intra-context frame problem may be neutralized by systems of special purpose adaptive couplings, while the inter-context frame problem may be neutralized by systems that exhibit the phenomenon of continuous reciprocal causation. I also defend the view that while continuous reciprocal causation is in conflict with representational explanation, special-purpose adaptive coupling, as well as its associated agential phenomenology, may feature representations. My proposal has been criticized recently by Dreyfus, who accuses me of propagating a cognitivist misreading of Heidegger, one that, because it maintains a role for representation, leads me seriously astray in my handling of the frame problem. I close by responding to Dreyfus’ concerns
    • 

    corecore