211 research outputs found

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Changing availability of TV white space in the UK

    Get PDF
    The UK regulator Ofcom has held a Pilot of TV white space (TVWS) technology in the UK. On the basis of the results of this Pilot, Ofcom has varied its calculations of allowed white space device equivalent isotropically radiated powers (EIRP). Further, the World Radiocommunication Conference (WRC) 2015 has assigned 694-790 MHz to mobile broadband on a co-primary basis, in International Telecommunication Union (ITU) Region 1 (which includes the UK/EU). Fundamental observations on the effects of these changes on TVWS availability in the UK are provided.</p

    Maximization of the optical intra-cavity power of whispering-gallery mode resonators via coupling prism

    Get PDF
    In this paper, a detailed description of the optical coupling into a Whispering Gallery Mode (WGM) resonator through a prism via frustrated total internal reflection (FTIR) is presented. The problem is modeled as three media with planar interfaces and closed expressions for FTIR are given. Then, the curvature of the resonator is taken into account and the mode overlap is theoretically studied. A new analytical expression giving the optimal geometry of a disc-shaped or ring-shaped resonator for maximizing the intra-cavity circulating power is presented. Such expression takes into consideration the spatial distribution of the WGM at the surface of the resonator, thus being more accurate than the currently used expressions. It also takes into account the geometry of the prism. It is shown an improvement in the geometry values used with the current expressions of about 30%. The reason why the pump laser signal can be seen in experiments under critical coupling is explained on this basis. Then, the conditions required for exciting the highest possible optical power inside the resonator are obtained. The aim is to achieve a highly-efficient up-conversion of a THz signal into the optical domain via the second-order nonlinearity of the resonator material.This work has been financially supported by "DiDaCTIC: Desarrollo de un sistema de comunicaciones inalámbrico en rango THz integrado de alta tasa de datos", TEC2013-47753-C3, CAM S2013/ICE-3004 "DIFRAGEOS" projects, "Proyecto realizado con la Ayuda Fundación BBVA a Investigadores y Creadores Culturales 2016" and "Estancias de movilidad de profesores PRX16/00021"

    Reconfigurable Computing Applied to Latency Reduction for the Tactile Internet

    Full text link
    Tactile internet applications allow robotic devices to be remotely controlled over a communication medium with an unnoticeable time delay. In a bilateral communication, the acceptable round trip latency is usually in the order of 1ms up to 10ms depending on the application requirements. It is estimated that 70% of the total latency is generated by the communication network, and the remaining 30% is produced by master and slave devices. Thus, this paper aims to propose a strategy to reduce 30% of the total latency that is produced by such devices. The strategy is to apply reconfigurable computation using FPGAs to minimize the execution time of device-associated algorithms. With this in mind, this work presents a hardware reference model for modules that implement nonlinear positioning and force calculations as well as a tactile system formed by two robotic manipulators. In addition to presenting the implementation details, simulations and experimental tests are performed in order to validate the proposed model. Results associated with the FPGA sampling rate, throughput, latency, and post-synthesis occupancy area are analyzed.Comment: 20 pages, 32 Figure

    Performance analysis of multi-hop framed ALOHA systems with virtual antenna arrays

    Get PDF
    We consider a multi-hop virtual multiple-input-multiple-output system, which uses the framed ALOHA technique to select the radio resource at each hop. In this scenario, the source, destination and relaying nodes cooperate with neighboring devices to exploit spatial diversity by means of the concept of virtual antenna array. We investigate both the optimum number of slots per frame in the slotted structure and once the source-destination distance is fixed, the impact of the number of hops on the system performance. A comparison with deterministic, centralized re-use strategies is also presented. Outage probability, average throughput, and energy efficiency are the metrics used to evaluate the performance. Two approximated mathematical expressions are given for the outage probability, which represent lower bounds for the exact metric derived in the paper

    Cognitive and cooperative wireless networks

    Get PDF
    The traditional approach of dealing with spectrum management in wireless communications has been the definition of a licensed user granted with exclusive exploitation rights for a specific frequency. While it is relatively easy in this case to ensure that excessive interference does not occur, this approach is unlikely to achieve the objective to maximize the value of spectrum, and in fact recent spectrum measurements carried out worldwide have revealed a significant spectrum underutilization, in spite of the fact that spectrum scarcity is claimed when trying to find bands where new systems can be allocated. Just to mention some examples of measurements, different studies can be found in [1-6], revealing that overall occupation in some studies for frequencies up to 7GHz could be in the order of only 18%. © 2012 Springer Milan. All Right Reserved

    Data-precoded algorithm for multiple-relay-assisted systems

    Get PDF
    A data-precoded relay-assisted (RA) scheme is proposed for a system cooperating with multiple relay nodes (RNs), each equipped with either a single-antenna or a two-antenna array. The classical RA systems using distributed space-time/frequency coding algorithms, because of the half-duplex constraint at the relays, require the use of a higher order constellation than in the case of a continuous link transmission from the base station to the user terminal. This implies a penalty in the power efficiency. The proposed precoding algorithm exploits the relation between QPSK and 4 L -QAM, by alternately transmitting through L relays, achieving full diversity, while significantly reducing power penalty. This algorithm explores the situations where a direct path (DP) is not available or has poor quality, and it is a promising solution to extend coverage or increase system capacity. We present the analytical derivation of the gain obtained with the data-precoded algorithm in comparison with distributed space-frequency block code (SFBC) ones. Furthermore, analysis of the pairwise error probability of the proposed algorithm is derived and confirmed with numerical results. We evaluate the performance of the proposed scheme and compare it relatively to the equivalent distributed SFBC scheme employing 16-QAM and non-cooperative schemes, for several link quality scenarios and scheme configurations, highlighting the advantages of the proposed scheme

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC
    • …
    corecore