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Abstract: In this paper, a detailed description of the optical coupling into a Whispering Gallery
Mode (WGM) resonator through a prism via frustrated total internal reflection (FTIR) is pre-
sented. The problem is modeled as three media with planar interfaces and closed expressions for
FTIR are given. Then, the curvature of the resonator is taken into account and the mode overlap
is theoretically studied. A new analytical expression giving the optimal geometry of a disc-
shaped or ring-shaped resonator for maximizing the intra-cavity circulating power is presented.
Such expression takes into consideration the spatial distribution of the WGM at the surface of
the resonator, thus being more accurate than the currently used expressions. It also takes into
account the geometry of the prism. It is shown an improvement in the geometry values used
with the current expressions of about 30%. The reason why the pump laser signal can be seen
in experiments under critical coupling is explained on this basis. Then, the conditions required
for exciting the highest possible optical power inside the resonator are obtained. The aim is to
achieve a highly-efficient up-conversion of a THz signal into the optical domain via the second-
order nonlinearity of the resonator material.
c© 2016 Optical Society of America
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1. Introduction
Currently the technological solutions for filling the so-called "THz gap" and detecting THz
radiation are limited. Some applications require receivers with extremely high sensitivity able
to detect (count) individual photons at THz and sub-THz frequencies. An example of high in-
terest in cosmology is the indirect detection of primordial gravitational waves by measuring
the B-mode polarization of the cosmic microwave background (CMB) [1]. Semiconductor de-
tector technology has however not reached the photon-counting limit at room temperature [2].
Indeed, photon counting THz and sub-THz receivers available to date operate under cryogenic
conditions, which makes them expensive and difficult to implement [3].
Another approach in the pursuit of a room-temperature photon-counting THz receiver is non-

linear parametric up-conversion of the THz radiation into the optical domain [4], where photons
are more energetic and photon counting detectors working at room temperature (for example,
avalanche diodes) are currently available [5]. In this approach, a laser optical field (pump) at
frequency ωp is mixed with the THz radiation at frequency ωm inside a second-order χ(2) non-
linear dielectric to produce sidebands at frequencies ωs+ = ωp + ωm and ωs− = ωp − ωm, cor-
responding to sum-frequency-generation (SFG) and difference-frequency-generation (DFG) re-
spectively [6]. The efficiency of the nonlinear up-conversion which is defined as the ratio of the
output sideband power to input THz power, increases with the input optical power, the length of
the interaction path, and the nonlinear χ(2) interaction tensor [7]. This makes whispering gallery
mode (WGM) resonators made of nonlinear crystals suitable for these applications since their
circular-shaped geometry guides the field along the border so it continuously interferes con-
structively with itself after each round-trip, resulting in a circulating WGM with a power in
steady-state several times higher than the incoming power [8]. As the guiding mechanism is
purely governed by the geometry of the resonator, another WGM within the transparency re-
gion of the crystal with similar modal profile can be also excited. If such mode (for example the
THz field) has the same phase velocity in every point as the optical WGM, a phase-matched [10]
and thus efficient up-conversion of the THz signal takes place.
Usually, both WGMs are excited by near-field coupling [11]. For the optical WGM, the

evanescent field arising from a prism surface when a laser beam is incident beyond the criti-
cal angle is commonly used [12]. The way the optical field is optimally coupled into the WGM
resonator is the main topic discussed in this work. We will focus on deriving analytical expres-
sions for the optical coupling through a prism under total internal reflection in order to optimize
the intra-cavity circulating power. For this, the optimal gap between prism and resonator will be
found by means of a plane waves model, whereas the optimal geometry of the resonator will be
obtained by taking into account the spatial field distribution of both, the optical Gaussian beam
refracted inside the prism and the WGM at the surface of the resonator. The paper is structured
as follows: In Section 2 we model the coupling mechanism as three dielectric layers with planar
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Fig. 1. Nonlinear up-conversion THz receiver. The laser beam is incident into the coupling
prism and an optic WGM is excited in the resonator. By exciting another WGM for the
THz signal the nonlinear interaction takes place and the up-converted signal is coupled out
to the prism and detected by an optical spectrum analyzer.

Fig. 2. Three media propagation model. n1 and n2 are the indices of refraction of the prism
and resonator respectively. (a) Propagation from the prism. E+1a and E−

1a are the incident
and reflected electric fields evaluated in the prism-air interface respectively, whereas E+2a is
the transmitted electric field evaluated in the air-resonator interface. (b) Propagation from
the resonator. E+2b and E−

2b are the incident and reflected electric fields evaluated in the
resonator-air interface respectively, whereas E+1b is the transmitted electric field evaluated
in the air-prism interface.

interfaces, and derive the electromagnetic transmission and reflection coefficients. In Section 3
the conditions these coefficients must fulfill to maximize the field inside the WGM resonator
are obtained. Then, in Section 4 the practical aspects of optimal coupling achievement are dis-
cussed. In Section 5, the resonator’s curvature is considered and the optimal geometry is found
in order to couple most of the laser’s power. Finally, conclusions are given.

2. Optical coupling through prism
The general setup for a THz receiver based on nonlinear up-conversion inside a WGM res-
onator is shown in Fig. 1. The nonlinear interaction takes place in a disc-shaped or torus-shaped
resonator made of a nonlinear material such as lithium niobate (LiNbO3). The laser beam is in-
cident onto a prism and coupled into the resonator via frustrated total internal reflection (FTIR).
If optimal coupling is achieved, no power will be reflected back to the prism at the laser fre-
quency as will be shown later. In this case, only the up-converted signal can couple out through
the prism and then be detected by an optical detector [9]. All power delivered by the laser is
trapped within the resonator, being partially lost by the radiation and intrinsic losses of the ma-
terial, and partially used in the up-conversion. This way, the maximum possible level of optical
field inside the resonator is accomplished.
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The coupling region is formed by three nonmagnetic and isotropic dielectric media: prism-air-
resonator. Even though nonlinear crystals such as LiNbO3 are not isotropic, we only consider
linearly polarized fields in one of the principal axes of the crystal [10]. This is permissible
as commonly only one polarization component of the field will dominate the interaction. The
full analytical solution of the coupling problem requires to solve the Helmholtz equation in
the three media and then ensure the continuity of the tangential components of the fields. Due
to the differences in the geometries involved, this problem is hard to solve and can instead
be addressed by finding separately the WGM field distribution from the Helmholtz equation
solution for the isolated resonator, and the evanescent field at the surface of an isolated prism.
These fields are expanded in modes and the matching between them is studied yielding to an
approximated solution of the problem [13]. Another approximated approach is to consider either
the prism’s evanescent field or the resonator’s WGM field as a primary field source ignoring the
presence of the other medium. From the primary field considered, the scattering in the other
medium is studied. In this section, we make a different approximation and consider all media
interaction by modeling the region as two planar interfaces between the three media and plane
waves excitation as shown in Fig. 2(a). This is a good approximation for Fresnel’s coefficients
calculation since in our practical application the optical wavelengths are very short compared
with the actual curvature radii of the interfaces. However, in order to consider spatial mode
matching, the variation of the air thickness due to a slight curvature in the air-resonator interface,
will be taken into account in the last section.
The solution of the Helmholtz equation inside the resonator shows that the WGM field travels

partially outside the resonator as an evanescent field [14]. Hence, it is necessary to introduce
an effective index of refraction neff of the resonator’s material in order to calculate the phase
velocity of the WGM at the rim of the resonator as c/neff , with c being the speed of light in
vacuum. Due to the high confinement of optical WGMs, neff ≈ n2 for optical frequencies, where
n2 is the index of refraction of the resonator. Therefore, the evanescent field that must exist in
the air gap in order to excite the WGMmust have a wave vector projection on the surface of the
prism equal to:

κwgm =
ω

c
neff ≈ ωc n2 (1)

where ω is the angular frequency. In the three planar media picture, the parallel-to-prism com-
ponent of the wave vector is related to the incidence angle of the incoming wave θ1 (see Fig. 2)
as κ | | = ω

c
n1 sin θ1, which must match with κwgm, hence

sin θ1 =
neff
n1
≈ n2
n1

(2)

where n1 is the refractive index of the prism. This can only be achieved if the refractive index
of the prism is greater than the refractive index of the resonator. Therefore, the angle of inci-
dence exceeds the critical angle between prism and air θc1 = arcsin (n0/n1), and the expected
evanescent field is created in the air gap.
Regarding the propagation process in the three media for arbitrary incidence angle θ1 and

electric field polarized perpendicularly to the plane of incidence, at the prism-air interface part
of the incident electric field is reflected back to the prism with coefficient ρ1 and angle θ1. Also,
part of the field is transmitted from the prism to the resonator, with coefficient τ12 and angle
θ2 (see Fig. 2(a)). Similarly, after one round-trip of the circulating WGM, the field is incident
from the resonator with angle θ2, being part of it transmitted back to the prism with coefficient
τ21 and angle θ1, and another part reflected inside the resonator with coefficient ρ2 and angle
θ2 (see Fig. 2(b)). Invoking the reciprocity theorem with the fields described in both situations
shown in Fig. 2 such that

∮
S
Ea × Hb · dS =

∮
S
Eb × Ha · dS where the surface S is a box with

two of their faces parallel to the interfaces, it can be shown that for nonmagnetic media
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Fig. 3. Two-port network scheme.

τ21 =
n2
n1

cos θ2
cos θ1

τ12 (3)

Additionally, merging both scenarios shown in Fig. 2, the power conservation principle can
be applied such that

∣∣∣E+1a
∣∣∣2 − ∣∣∣E−

1a + E
+
1b

∣∣∣2
∣∣∣E+2a + E

−
2b

∣∣∣2 − ∣∣∣E+2b
∣∣∣2
=
n2 cos θ2
n1 cos θ1

, (4)

leading to the relation
ρ2 = − τ12

τ∗12
ρ∗1 (5)

The mathematical expressions relating ρ1 and τ12 to n1, n2, h and θ1, are not necessary by
now. However, the function ρ1 will be explicitly calculated later in this paper. Following an
analog procedure, the above equations can be derived for electric fields polarized parallel to the
plane of incidence.

3. Coupling optimization
The whole coupling situation described above can be viewed as a two-port network where the
ports are the prism and the resonator media, each one supporting an incident and a reflected
wave as shown in Fig. 3, whose electric fields are related as

[
E−
1
E−
2

]
=

[
ρ1 τ21
τ12 ρ2

] [
E+1
E+2

]
(6)

Defining the power waves as ai =
√

ni cos θi
2η0 E+

i
and bi =

√
ni cos θi
2η0 E−

i
where η0 =

√
μ0
ε0
, then

|ai |2 and |bi |2 , i = 1, 2 gives the incident and reflected power respectively in the corresponding
port (strictly speaking, they represent the power by unit area on the interfaces surfaces). From
this and Eq. (3), Eq. (6) can be rewritten as

[
b1
b2

]
=

[
ρ1 k
k ρ2

] [
a1
a2

]
, (7)
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Fig. 4. WGM power relative to incident laser power versus |ρ1 | for three different values of
α. Note that the maximum intracavity power (critical coupling) is achieved at the marked
positions corresponding to α = |ρ1 |.

where k = τ12
√

n2 cos θ1
n1 cos θ2 = |k | e jϕ , ρ1 = |ρ1 | e jβ1 and ρ2 = |ρ1 | e jβ2 . The field after one round-

trip of the WGM E+2 can be related with E−
2 by considering a phase shift ξ and an attenuation

factor 0 ≤ α ≤ 1 given by the losses in the resonator, such that α = 1 for a lossless WGM
propagation. Hence,

a2 = αe jξ b2 (8)

The WGM is in resonance if ξ + β2 = 2πm,m = ±1,±2, . . ., i.e., when the field adds con-
structively with itself after being reflected at the coupling point inside the resonator. Substituting
Eq. (8) into Eq. (7) considering the resonance condition, the reflected power in each medium
results

|b1 |2 =
(α − |ρ1 |)2
(1 − α |ρ1 |)2

|a1 |2 (9)

|b2 |2 =
1 − |ρ1 |2

(1 − α |ρ1 |)2
|a1 |2 (10)

where we have used |k |2 = 1 − |ρ1 |2, which can be demonstrated by using the power conserva-
tion principle |a1 |2 + |a2 |2 = |b1 |2 + |b2 |2 along with Eq. (5). By differentiating with respect to
|ρ1 |, it is found that |b2 |2 (and |a2 |2) have an absolute maximum when |ρ1 | = α as can be noted
in Fig 4 which agrees with [15]. This is called critical coupling and is the desired working point
because the highest possible level of power is circulating inside the resonator. This point coin-
cides with impedance matching since no power is reflected back to the prism (|b1 |2 = 0) and
all the laser power is coupled into the resonator, continuously increasing the field inside to the
highest level due to constructive interference. This occurs until the steady-state is reached where
the incoming laser power compensates radiation and intrinsic losses in the resonator medium.
Figure 4 also shows the WGM power to incident laser power ratio when critical coupling is
enforced. For α > 1/

√
2 the power circulating inside the resonator is higher than the incoming

laser power. This power enhancement defines the Finesse of the resonator F = |a2 |2
|a1 |2 and may

reach considerably high levels for low losses.
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4. Tuning for critical coupling
Applying boundary conditions, we can derive the Fresnel’s coefficients for the problem in Fig.
2(a) to obtain the reflection coefficient ρ1, which results in

ρ1 =
n1 cos θ1(1 + r) − C0(1 − r)
n1 cos θ1(1 + r) + C0(1 − r) , (11)

where,

r =
C0 − n2C2
C0 + n2C2

e− j 4πλ0
hC0 , (12)

C0 = j
√
n21 sin

2 θ1 − 1 (13)

C2 =

√

1 −
(
n1
n2

)2
sin2 θ1 , (14)

and λ0 is the wavelength of light in the air gap. For a given incidence angle θ1, which is con-
ditioned by Eq. (2), the value of |ρ1 | can be tuned for critical coupling by changing the air gap
thickness h. The dependence of |ρ1 | with h can be introduced in Eqs. (8) and (10) to obtain the
finesse as a function of h. This is plotted for a given α, and three different incidence angles in
Fig. 5. Note the sub-wavelength available range for tuning the thickness h. For instance, with
λ0 = 1550 nm, a resolution of h on the order of tens of nanometers is needed. This range scales
with the decay length of the evanescent field which decreases with the incidence angle. For a
given value of losses α, we can calculate the required distance h to reach critical coupling for a
given incidence angle θ1 as shown in Fig. 6.

5. Resonator geometry optimization
The actual surface of the resonator at the coupling region is not flat. This has to be taken into
consideration since the air gap h is now variable below the projection of the laser beam on the
prism interface. Asuming a Gaussian beam is incident on the first prism face with angle α0
as shown in Fig. 7, the refracted beam with angle α1 according to Snell’s laws, will have an
elliptical transversal section with semi-major over semi-minor axis ratio cos α1/ cos α0. Then,
defining Δβ = θ1 − β = α1 where β is the angle of the prism, the beam’s footprint at the
interface z = 0 is an ellipse which field is described by

Ψ1(x , y) = e
− 1

W 2 (x
2+(y cos θ1b(Δβ))2) , (15)

with,

b(Δβ) =

√
1 − n21 sin(Δβ)2

cosΔβ
(16)

whereW is the beam’s waist size. The parameter b(Δβ) describes the elliptical deformation of
the beam when refracted in the prism due to the difference between the required incidence angle
θ1 and the angle of the prism β. Hence, the iso-scalar curves of the footprint at z = 0 are ellipses
with semi-minor over semi-major axes ratio equal to cos θ1b(Δβ). If critical coupling is desired,
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Fig. 5. Power enhancement as a function of h for three different incidence angles greater
than the critical angle between prism and air θc1 = arcsin(1/n1) (evanescent field is gener-
ated), and less than the critical angle between prism and resonator θc2 = arcsin(n2/n1) (to
avoid total internal reflection in the whole system). For this particular example, the prism
is made of diamond (n1 = 2.39) and the resonator is made of LiNbO3 (n2 = 2.21). The
absortion coefficient of LiNbO3 is about κ′′ = 5 × 10−2, so for a resonator with radius
R0 = 2.5mm, α ≈ e−2πκ′′R0 = 0.999.
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Fig. 6. Optimal h as a function of θ1/θc2 for four different values of α. The media consid-
ered are the ones of Fig. 5. θc2 = arcsin(n2/n1) is the critical angle between prism and
resonator. In real resonators, however, angles close to θc2 cannot be used due to the finite
coupling length of the curved surface and the plane prism interface which will be shown in
Section 5.

no reflected field must exist at the prism-air interface. Therefore, the evanescent WGM field
scattered back to the prism must interfere destructively with the natural reflection of the incident
beam at the prism-air interface, which means that they must have the same spatial distribution.
From uniqueness theorem, the foregoing implies that the field in the air gap must match the
footprint distribution of Eq. (15) when evaluated at the prism interface. As an approximation,
we will consider the evanescent WGM field as a primary field in the air gap. For axisymmetric
resonators as the one shown in Fig. 8 with curvature radii R0 and r0, the field distribution at the
rim surface has the approximated form [16]

E |r=r0 ∝ e−γ
2/2γ2m e− jmϕ (17)
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Fig. 7. Gaussian beam refraction.
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Fig. 8. Left: Resonator-prism configuration. Right: Disc-shaped WGM resonator geometry.

where ϕ is the equatorial angle of the resonator, m is the mode number of the WGM, γ is the
elevation angle shown in Fig. 8, and γm = 1√

m

(
R0
r0

)3/4
. Eq. (17) is valid for high mode number

m, in which case the evanescent field outside the resonator decreases from the rim with the
dependence [13]

Ee ∝ E |r=r0 e−κ
′′ (r−r0) (18)

with κ′′ = 2π
λ0

√
n22 − 1. According to Fig. 8, at the coupling region (x , y) ≈ (0, 0), so the angles

ϕ and γ are small. In this case r |z=0 − r0 ≈ h, being h = (x , y) the variable distance between
prism and resonator which can be obtained from geometrical relations as

h = d + R0 − r0

√√√√√⎛⎜⎜⎜⎜⎜⎜⎜⎝
R0
r0
− 1 +

√

1 −
(
x
r0

)2
⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2

−
(
y
r0

)2
(19)

where d is the shortest distance between prism and resonator. In the vicinity of the coupling re-
gion, x � r0 and y � r0, thereby

√
1 − (x/r0)2 ≈ 1− 1

2 (x/r0)
2 and (x/r0)4 � (x/r0)2 , (y/r0)2.

This results in the expression

h ≈ d + R0 − R0
√

1 − 1
R0

⎡
⎢⎢⎢⎢⎣

(
x√r0
)2
+

(
y√
R0

)2⎤⎥⎥⎥⎥⎦ (20)

Eq. (20) shows that h is constant over concentric ellipses with semi-minor over semi-major
axes ratio equal to

√
r0/R0. This equation can be simplified further by taking again the first two

terms of the binomial series of the square root, yielding

h(x , y) ≈ r |z=0 − r0 ≈ d + 1
2

⎡
⎢⎢⎢⎢⎣

(
x√r0
)2
+

(
y√
R0

)2⎤⎥⎥⎥⎥⎦ (21)
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Fig. 9. Optimal ratio r0/R0 of a LiNbO3 resonator as a function of the incidence angle θ1
calculated by neglecting the dependence of the WGM with γ and by Eq. (26) for the cases
of β = θ1 and β = 68◦ which is the required incidence angle for a diamond prism and a
LiNbO3 resonator.

Substituting Eq. (21) in Eq. (18), and approximating γ ≈ sin γ = x/r0, we get the evanescent
field of the WGM at the prism plane

Ee |z=0 ∝ e−
1
2

[
(x/Δx)2+(y/Δy )2

]
e− jmϕ (22)

with,

Δx2 =
r20γ

2
m

1 + κ′′r0γ2m
(23)

and,
Δy2 =

R0
κ′′

(24)

Since we are interested in the spatial distribution of the evanescent WGM field at the prism, the
phase term of Eq. (22) is ignored as the phase matching in y direction is already considered in
Eq. (2). In order to match the elliptical field distribution of Eq. (22) with the one of the footprint
of the incoming laser beam given in Eq. (15),

[
b(Δβ) cos θ1

]2
=
Δx2

Δy2
=
r0
R0

(
κ′′r0γ2m

1 + κ′′r0γ2m

)
(25)

If the dependence with γ of theWGM field distribution in Eq. (17) is neglected, then γm → ∞
and cos θ1 ≈

√
r0
R0

as reported in [17]. However, by writing m ≈ ω
c
n2R0 (the mode number

represents the number of wavelengths fitting along the perimeter of the resonator), Eq. (25) can
be rewritten as

[
b(Δβ) cos θ1

]2 ≈ r0
R0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

n2√
n22 − 1

√
r0
R0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(26)

where the second term in the parentheses is in general not negligible. For a LiNbO3 resonator
and a diamond prism with β = θ1, the error in the optimal ratio r0/R0 calculated by neglecting
the dependence of the WGM with γ, with respect to an optimal ratio calculated from Eq. (26)
is about 30%. For a fixed prism angle β = 68◦, the optimal ratio r0/R0 is obtained for different
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Fig. 10. Reflected beam’s normalized power as a function of the ratio r0/R0 for three dif-
ferent prism angles and θ1 = 68◦ .

values of θ1 and compared with the case of normal incidence on the prism face (β = θ1) as
depicted in Fig. 9. As expected, the curves overlap at θ1 = 68◦ and the difference between them
is less than 1% withing a θ1 range of about 5 degrees. The normalized reflected beam power
can be calculated by taking the contribution of the WGM field refracted to the prism which
destructively interferes with the naturally reflected beam at the pirsm-air interface at critical
coupling, yielding

Pr
Pi
= 1 + 2b cos (θ1)

ΔxΔy
W2 − 8b

ΔxΔy
√
(2Δx2 +W2)(2b2Δy2 +W2)

(27)

Figure 10 shows the normalized reflected power as a function of the geometry of the resonator
r0/R0 for a f ixed θ1 = 68◦, a beam focused such that the footprint matches in the x direction
with the WGM field of Eq. (22) and different prism angles β. The reflected beam is totally
canceled for the ratio given by Eq. (26) in each case, whereas by using the simplified version of
Eq. (26) considering γm → ∞, the normalized reflected power is larger than −20 dB. As it may
be noticed, the system is more tolerant to errors in r0/R0 dimensions for normal incidence with
the prism’s face (β = θ1) in which case the ratio is maximum. Since b(Δβ) is an even function
of Δβ, the ratio will decrease for any mismatch between θ1 and β.
It is important to mention that in practice the footprint of the laser and the Gaussian window of

Eq. (22) do not have exactly the same dimensions since the laser beam is not perfectly focused
to have the required beam waist size. Therefore, total destructive interference does not occur
and a partially reflected beam at the prism can be observed even under critical coupling. This
explains why experimentally in the setup of Fig. 1 the laser pump is always visible in the optical
spectrum analyzer along with the generated sidebands [17].

6. Conclusion
The conditions required for achieving the optimal coupling of a laser beam into a WGM res-
onator have been discussed. With optimal coupling, the maximum possible level of power circu-
lates within the resonator, being this orders of magnitude larger than the incoming laser pump
depending on the resonator losses. The conditions required to achieve it can be summarized as
follows:

• Given the neff of the WGM and the media electromagnetic characteristics n1, n2, an inci-
dence angle θ1 must be chosen according to Eq. (2)
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• Given the coupling angle θ1, the geometry of the rim is chosen according to Eq. (26).

• Finally, the distance d is tuned to accomplish the critical coupling condition. This gap
can be found approximately from the curves of Fig. 6.

Consequently, the shape of the resonator is determined by the refractive index of the media
and the operation frequency. It can be shown that the Finesse of a critically coupled resonator
increases with the Q factor and scales inversely with the mode number m. The absorption Q
factor is fixed by the material properties and the radiation Q factor grows very quickly with m.
Therefore, in the THz domain, for a given frequency it is desired to have tiny resonators so the
number of wavelengths in the azimuthal direction m is small, provided that radiation losses are
negligible with respect to absorption losses and the Q factor is not degraded by the radiation
of the mode. For example, for a Lithium Niobate resonator at sub-THz frequencies, the total
Q factor is determined by the absorption quality factor which is about Qabs ≈ 280 for m ≥ 4.
Thus, the mode m = 4 optimizes the critically-coupled finesse of the resonator. The coupling of
low-frequency fields into WGM resonators still needs to be analytically studied in order to be
optimized.
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