1,044 research outputs found

    Quantification of apolipoprotein E receptors in human brain-derived cell lines by real-time polymerase chain reaction

    Get PDF
    Apolipoprotein (apo) E4 is a risk factor for Alzheimer's disease (AD) and other neurodegenerative diseases, compared to wild-type apoE3. The mechanism(s) is unknown. One possibility, demonstrated in peripheral tissue cell lines, is that apoE stimulates nitric oxide synthase (NOS) via a receptor-dependent signalling pathway and that apoE4 generates inappropriate amounts of nitric oxide (NO) compared to apoE3. Prior to biochemical investigations, we have quantified the expression of several candidate receptor genes, including low-density lipoprotein-receptor (LDL-r) family members and scavenger receptor class B, types I and II (SR-BI/II), as well as the three NOS isoenzymes and protein kinase B (Akt), in 38 human cell lines, of which 12 derive from brain. Expression of apoE receptor 2 (apoER2), a known signalling receptor in brain, was readily detected in SH-SY-5Y and CCF-STTG1 cells, common models of neurons and astrocytes, respectively, and was highest in H4 neuroglioma, NT-2 precursor cells and IMR-32 neuroblastoma cells. Transcripts of the other lipoprotein receptors were widely, but variably, distributed across the different cell types. Of particular note was the predominant expression of SR-BII over SR-BI in many of the brain-derived cells. As the C-terminus of SR-BII, like apoER2, contains potential SH3 signalling motifs, we suggest that in brain SR-BII functions as a signal transducer receptor. (c) 2004 Elsevier Inc. All rights reserved

    A family of Ran binding proteins that includes nucleoporins.

    Full text link

    Managing sleep and wakefulness in a 24 hour world

    Get PDF
    This article contributes to literature on the sociology of sleep by exploring the sleeping practices and subjective sleep experiences of two social groups: shift workers and students. It draws on data, collected in the UK from 25 semi-structured interviews, to discuss the complex ways in which working patterns and social activities impact upon experiences and expectations of sleep in our wired awake world. The data show that, typically, sleep is valued and considered to be important for health, general wellbeing, appearance and physical and cognitive functioning. However, sleep time is often cut back on in favour of work demands and social activities. While shift workers described their efforts to fit in an adequate amount of sleep per 24-hour period, for students, the adoption of a flexible sleep routine was thought to be favourable for maintaining a work–social life balance. Collectively, respondents reported using a wide range of strategies, techniques, technologies and practices to encourage, overcome or delay sleep(iness) and boost, promote or enhance wakefulness/alertness at socially desirable times. The analysis demonstrates how social context impacts not only on how we come to think about sleep and understand it, but also how we manage or self-regulate our sleeping patterns

    Responses to selection for lean growth in sheep

    Get PDF
    This paper reports the selection responses achieved, and related results, following 9 years of index selection for lean growth in Suffolk sheep. The breeding goal of the index used comprised carcass lean weight and carcass fat weight at a constant age, with relative economic values of + 3 and –1 per kg. The selection criteria were live weight (LWT), ultrasonic fat depth (UFD) and ultrasonic muscle depth (UMD) adjusted to a constant age of 150 days. By year 9, responses in LWT, UFD and UMD in both sexes, as judged by the divergence between selection and control line performance, amounted to 4·88 kg, –1·1 mm and 2·8 mm respectively; these responses are between 7 and 15% of the overall means of the traits concerned. Although selection was originally on index scores based on phenotypic records, the retrospective analyses reported here used the mixed model applications of residual maximum likelihood to estimate parameters and best linear unbiased prediction to predict breeding values. The statistical model comprised fixed effects plus random effects accounting for direct additive, maternal additive and temporary environmental variation. Estimated genetic trends obtained by regressing estimated breeding values on year of birth were similar to annual responses estimated by comparing selection and control line means. Estimates of direct heritabilities were 0·054, 0·177, 0·286, 0·561 and 0·410 for birth weight (BWT), weaning weight (WWT), LWT, UFD and UMD respectively. Corresponding estimates of maternal heritabilities were 0·287, 0·205, 0·160, 0·083 and 0·164. Phenotypic correlations between all pairs of traits were positive and usually moderately high. There were low negative direct additive correlations between BWT and WWT, and between BWT and LWT, but higher positive maternal additive correlations between all other pairs of weight traits

    Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope

    Get PDF
    AbstractBackground: Selective protein import into the cell nucleus occurs in two steps: binding to the nuclear envelope, followed by energy-dependent transit through the nuclear pore complex. A 60 kD protein, importin, is essential for the first nuclear import step, and the small G protein Ran/TC4 is essential for the second. We have previously purified the 60 kD importin protein (importin 60) as a single polypeptide.Results We have identified importin 90, a 90 kD second subunit that dissociates from importin 60 during affinity chromatography on nickel (II)–nitrolotriacetic acid–Sepharose, a technique that was originally used to purify importin 60. Partial amino-acid sequencing of Xenopus importin 90 allowed us to clone and sequence its human homologue; the amino-acid sequence of importin 90 is strikingly conserved between the two species. We have also identified a homologous budding yeast sequence from a database entry. Importin 90 potentiates the effects of importin 60 on nuclear protein import, indicating that the importin complex is the physiological unit responsible for import. To assess whether nuclear localization sequences are recognized by cytosolic receptor proteins, a biotin-tagged conjugate of nuclear localization signals linked to bovine serum albumin was allowed to form complexes with cytosolic proteins in Xenopus egg extracts; the complexes were then retrieved with streptavidin–agarose. The pattern of bound proteins was surprisingly simple and showed only two predominant bands: those of the importin complex. We also expressed the human homologue of importin 60, Rch1p, and found that it was able to replace its Xenopus counterpart in a functional assay. We discuss the relationship of importin 60 and importin 90 to other nuclear import factors.Conclusion Importin consists of a 60 and a 90 kD subunit. Together, they constitute a cytosolic receptor for nuclear localization signals that enables import substrates to bind to the nuclear envelope

    Chemoselective polymerizations from mixtures of epoxide, lactone, anhydride, and carbon dioxide

    Get PDF
    Controlling polymer composition starting from mixtures of monomers is an important, but rarely achieved, target. Here a single switchable catalyst for both ring-opening polymeri-zation (ROP) of lactones and ring-opening copolymerization (ROCOP) of epoxides, anhydrides and CO2 is investigated, using both experimental and theoretical methods. Different combinations of four model monomers: -caprolactone, cyclohexene oxide, phthalic anhydride and carbon dioxide are investigated using a single dizinc catalyst. The catalyst switches between the distinct polymerization cycles and shows high monomer selectivity resulting in block sequence control and predictable compositions (esters and car-bonates) in the polymer chain. The understanding gained of the orthogonal reactivity of monomers, specifically con-trolled by the nature of the metal-chain end group, opens the way to engineer polymer block sequences

    Understanding "corruption" in regulatory agencies: the case of food inspection in Saudi Arabia

    Get PDF
    Corruption is a relatively neglected topic in studies of regulatory agencies. The label is applied to a wide range of deviations from behavioural standards derived ultimately from Weber’s account of the ideals of Prussian bureaucracy. This paper draws on a study of the work of Saudi Food Inspectors (SFIs) to argue that it is unhelpful to reduce a complex phenomenon to simple allegations of malpractice that can be managed by disciplinary sanctions. Our data show that irregular behaviour by street-level agents may be deeply embedded in the expectations that members of a society have of one another. It is less a matter of personal gain than of maintaining one’s recognition as a fellow-citizen. Such behaviour is not easily changed through sanctions directed at individual inspectors. Our study does not exclude the possibility that irregular behaviour can be motivated by personal gain, and properly managed by criminal or similar penalties. However, it does propose that research should be more sensitive to the contexts within which irregular behaviour occurs rather than treating ‘corruption’ as a uniform and homogenous phenomenon

    The Skagit County choir COVID-19 outbreak – have we got it wrong?

    Get PDF
    Copyright © 2022 The Authors. Objectives: Over time, papers or reports may come to be taken for granted as evidence for some phenomenon. Researchers cite them without critically re-examining findings in the light of subsequent work. This can give rise to misleading or erroneous results and conclusions. We explore whether this has occurred in the widely reported outbreak of SARS-CoV-2 at a rehearsal of the Skagit Valley Chorale in March 2020, where it was assumed, and subsequently asserted uncritically, that the outbreak was due to a single infected person. Study design: Review of original report and subsequent modelling and interpretations. Methods: We reviewed and analysed original outbreak data in relation to published data on incubation period, subsequent modelling drawing on the data, and interpretations of transmission characteristics of this incident. Results: We show it is vanishingly unlikely that this was a single point source outbreak as has been widely claimed and on which modelling has been based. Conclusion: An unexamined assumption has led to erroneous policy conclusions about the risks of singing, and indoor spaces more generally, and the benefits of increased levels of ventilation. Although never publicly identified, one individual bears the moral burden of knowing what health outcomes have been attributed to their actions. We call for these claims to be re-examined and for greater ethical responsibility in the assumption of a point source in outbreak investigations.Funding: None declared

    The Drosophila snr1 and brm Proteins are Related to Yeast SWI/SNF Proteins and are Components of a Large Protein Complex

    Get PDF
    During most of Drosophila development the regulation of homeotic gene transcription is controlled by two groups of regulatory genes, the trithorax group of activators and the Polycomb group of repressors. brahma (brm), a member of the trithorax group, encodes a protein related to the yeast SWI2/SNF2 protein, a subunit of a protein complex that assists sequence-specific activator proteins by alleviating the repressive effects of chromatin. To learn more about the molecular mechanisms underlying the regulation of homeotic gene transcription, we have investigated whether a similar complex exists in flies. We identified the Drosophila snr1 gene, a potential homologue of the yeast SNF5 gene that encodes a subunit of the yeast SWI/SNF complex. The snr1 gene is essential and genetically interacts with brm and trithorax (trx), suggesting cooperation in regulating homeotic gene transcription. The spatial and temporal patterns of expression of snr1 are similar to those of brm. The snr1 and brm proteins are present in a large (> 2 x 10(6) Da) complex, and they co-immunoprecipitate from Drosophila extracts. These findings provide direct evidence for conservation of the SWI/SNF complex in higher eucaryotes and suggest that the Drosophila brm/snr1 complex plays an important role in maintaining homeotic gene transcription during development by counteracting the repressive effects of chromatin

    The Drosophila snr1 and brm Proteins are Related to Yeast SWI/SNF Proteins and are Components of a Large Protein Complex

    Get PDF
    During most of Drosophila development the regulation of homeotic gene transcription is controlled by two groups of regulatory genes, the trithorax group of activators and the Polycomb group of repressors. brahma (brm), a member of the trithorax group, encodes a protein related to the yeast SWI2/SNF2 protein, a subunit of a protein complex that assists sequence-specific activator proteins by alleviating the repressive effects of chromatin. To learn more about the molecular mechanisms underlying the regulation of homeotic gene transcription, we have investigated whether a similar complex exists in flies. We identified the Drosophila snr1 gene, a potential homologue of the yeast SNF5 gene that encodes a subunit of the yeast SWI/SNF complex. The snr1 gene is essential and genetically interacts with brm and trithorax (trx), suggesting cooperation in regulating homeotic gene transcription. The spatial and temporal patterns of expression of snr1 are similar to those of brm. The snr1 and brm proteins are present in a large (> 2 x 10(6) Da) complex, and they co-immunoprecipitate from Drosophila extracts. These findings provide direct evidence for conservation of the SWI/SNF complex in higher eucaryotes and suggest that the Drosophila brm/snr1 complex plays an important role in maintaining homeotic gene transcription during development by counteracting the repressive effects of chromatin
    • …
    corecore