144 research outputs found

    ULTRA-LOCAL TEMPERATURE MAPPING WITH AN INTRINSIC THERMOCOUPLE

    Get PDF
    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920)International audienceWe report on a set-up derived from an Electrostatic Force Microscope (EFM) allowing us to probe temperature with a high spatial resolution. The system uses the well-known Seebeck effect through an intrinsic thermocouple made from an EFM conducting tip put in contact with a conducting sample. The contact radius between tip and sample is currently estimated to be in the 50 to 100 nm range depending on the elastic or the plastic deformation. The contact area can be assimilated to the electrical and thermal contact areas. In those conditions, the issue of heat conduction in air is solved. The thermal measurement is related to the Seebeck junction effect : it will therefore not be sensitive to buried materials or impurities

    Temperature Measurement of Microsystems by Scanning Thermal Microscopy

    Get PDF
    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920)International audienceSurface temperature measurements were performed with a Scanning Thermal Microscope. We aim at proving an eventual sub-micrometric resolution of this metrology when using a wollaston wire probe of micrometric size. A dedicated CMOS device was designed with arrays of lines 0.35mm in size with 0.8 mm and 10mm periods. Integrated Circuits with or without a passivition layer were tested. To enhance sensitivity, the IC heat source was excited with an AC current. We show that the passivation layer spreads heat so that the lines are not distinguishable. Removing this layer allows us to distinguish the lines in the case of the 10mm period

    Mid-infrared spectroscopic thermotransmittance measurements in dielectric materials for thermal imaging

    Get PDF
    Thermal considerations affect the performance of most microsystems. Although surface techniques can give information on the thermal properties within the material or about buried heat sources and defects, mapping temperature and thermal properties in three dimension (3D) is critical and has not been addressed yet. Infrared thermography, commonly used for opaque materials, is not adapted to semi-transparent samples such as microfluidic chips or semiconductor materials in the infrared range. This work aims at answering these needs by using the variations of transmittance with temperature to obtain information on the temperature within the thickness of the sample. We use a tunable mid-infrared light source combined with an infrared camera to measure these variations of transmittance in a glass wafer. We couple this technique with a thermal model to extract the thermotransmittance coefficient—the coefficient of temperature variation of the transmittance. We then introduce a semiempirical model based on Lorentz oscillators to estimate the temperature-dependent optical properties of our sample in the mid-IR spectral range. Combined with the measurement, this paper reports the spectroscopic behavior of the thermotransmittance coefficient in the mid-IR range and a way to predict it

    Using temperature as observable of the frequency response of RF CMOS amplifiers

    Get PDF
    The power dissipated by the devices of an integrated circuit can be considered a signature of the circuit's performance. Without disturbing the circuit operation, this power consumption can be monitored by temperature measurements on the silicon surface. In this paper, the frequency response of a RF LNA is observed by measuring spectral components of the sensed temperature. Results prove that temperature can be used to debug and observe figures of merit of analog blocks in a RFIC. Experimental measurements have been done in a 0.25 mum CMOS process. Laser probing techniques have been used as temperature sensors; specifically, a thermoreflectometer and a Michaelson interferometer.Peer ReviewedPostprint (author's final draft

    Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers

    Get PDF
    International audienceThe ability to precisely control the thermal conductivity (κ) of a material is fundamental in the development of on-chip heat management or energy conversion applications. Nanostructuring permits a marked reduction of κ of single-crystalline materials, as recently demonstrated for silicon nanowires. However, silicon-based nanostructured materials with extremely low κ are not limited to nanowires. By engineering a set of individual phonon-scattering nanodot barriers we have accurately tailored the thermal conductivity of a single-crystalline SiGe material in spatially defined regions as short as ∼15 nm. Single-barrier thermal resistances between 2 and 4×10−9 m2 K W−1 were attained, resulting in a room-temperature κ down to about 0.9 W m−1 K−1, in multilayered structures with as little as five barriers. Such low thermal conductivity is compatible with a totally diffuse mismatch model for the barriers, and it is well below the amorphous limit. The results are in agreement with atomistic Green’s function simulations

    Laser Scanning Microscopy of HTS Films and Devices

    Get PDF
    The work describes the capabilities of Laser Scanning Microscopy (LSM) as a spatially resolved method of testing high_Tc materials and devices. The earlier results obtained by the authors are briefly reviewed. Some novel applications of the LSM are illustrated, including imaging the HTS responses in rf mode, probing the superconducting properties of HTS single crystals, development of twobeam laser scanning microscopy. The existence of the phase slip lines mechanism of resistivity in HTS materials is proven by LSM imaging.Comment: 17 pages, 21 figures, Submitted to Fizika Nizkikh Temperatur (Low Temperature Physics

    Imaging setup for temperature, topography, and surface displacement measurements of microelectronic devices

    No full text
    International audienceWe present an imaging system that enables the extraction of three different types of information: First, the topography measurement of an electronic device at rest; then, two other informations are obtained when the same device is submitted to a transient current: on one hand, the induced surface displacement and on the other hand, the qualitative surface temperature variations field. The same bench includes two imaging techniques, one based upon interferometry, the other upon thermoreflectance, both of them using a light-emitting diode as a source of light. Results on a microheater are presented

    Optical techniques for local measurement

    No full text
    no abstrac

    LASER PROBING OF THERMAL-BEHAVIOR OF ELECTRONIC COMPONENTS AND ITS APPLICATION IN QUALITY AND RELIABILITY TESTING

    No full text
    We have developed two optical laser probes for the contactless characterisation of microelectronic components and ICs. The first is a high resolution interferometer for the measurement of dilatations, absolute values over 11 decades are obtained ranging from 10-3 to 10-14 m. The second is a reflectance probe for the absolute measurement of surface temperature variations upon ICs. The instrument is a thermometer for surface micrometric analysis able to measure temperature variation in the 10-3 to 500 °K range. The outstanding performances of these probes have been the starting point of the development of new investigation methods in the field of quality and reliability measurements. We show results of hot points detection upon integrated circuits with micrometric lateral resolution. We also present a method for homogeneity analysis of current density inside power MOS transistors. Finally we present a method for absolute temperature mapping upon metallic lines used in accelerated tests of current stress to study their reliability with regard to electromigration
    corecore