118 research outputs found

    Numerical simulation of streamer propagation in nitrogen at atmospheric pressure

    Get PDF
    Results of the application of flux-corrected transport techniques to a two-dimensional numerical simulation of streamer propagation are presented. Characteristics such as diameter, velocity, shape, and density gradient of the head, and ionization in the body of the propagating streamer are determined. These results provide new insight into streamer propagation

    Spontaneous Branching of Anode-Directed Streamers between Planar Electrodes

    Get PDF
    Non-ionized media subject to strong fields can become locally ionized by penetration of finger-shaped streamers. We study negative streamers between planar electrodes in a simple deterministic continuum approximation. We observe that for sufficiently large fields, the streamer tip can split. This happens close to Firsov's limit of `ideal conductivity'. Qualitatively the tip splitting is due to a Laplacian instability quite like in viscous fingering. For future quantitative analytical progress, our stability analysis of planar fronts identifies the screening length as a regularization mechanism.Comment: 4 pages, 6 figures, submitted to PRL on Nov. 16, 2001, revised version of March 10, 200

    Streamer Propagation as a Pattern Formation Problem: Planar Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations.Comment: 4 pages, revtex, 3 ps file

    Active faults studies in Delhi and national capital region (NCR): Inferences from satellite data and field investigations

    Get PDF
    In recent years, the National Capital Region (NCR) of Delhi has experienced several earthquakes ranging in magnitude from 1.0 to 6.7. According to the last 50 years of earthquake data, the majority of earthquakes in the NCR have occurred near the Mahendragarh Dehradun Fault (MDF) and the Sohna Fault (SF). The region is bounded by a number of subsurface Ridges, Faults, and Lineaments, which are also influenced by the active plate boundary of the Indian and Eurasian plates. Active fault mapping is critical for the precise identification and marking of active fault traces in the NCR area for a precise seismic hazard assessment. We used high resolution Cartosat-1 stereopair data obtained from NRSC, Hyderabad, and Anaglyph (A 3D representation of the surface) and DEM prepared with ENVI software to map the active faults. We identified 12 sites in the NCR region based on satellite data interpretation, primarily along the MDF and Sohna Fault and their extensions. The presence of tectono-geomorphic markers along the MDF and Sohna Fault, such as warped surfaces indicative of fault scarps, stream offsets, gully erosion, and sag ponds, suggests active tectonic movement along these faults, most likely in the recent geological past. We believe the MDF is a right-lateral strike-slip fault with a compressional component on the western side and an extensional component on the eastern side. It acts as a segment boundary between compressional and extensional boundaries. We also identified the right lateral Nuh-Jhirka fault (NJF), which can be the Sohna Fault’s southern extension from Nuh to Jhirka. The western limb of the Delhi Mega fold has also seen a few right-lateral strike-slip movements that have extended up to the eastern bank of the Yamuna River, where the river reflects the base-level change and tight meandering on its upward side and a straight pattern on its downward side. This fault is known as the Delhi Fault (DF). The findings are preliminary, and further research would be required to create a detailed active fault map of the Delhi-NCR region to conduct a precise Seismic Hazard Assessment (SHA) of the region

    A moving boundary problem motivated by electric breakdown: I. Spectrum of linear perturbations

    Get PDF
    An interfacial approximation of the streamer stage in the evolution of sparks and lightning can be written as a Laplacian growth model regularized by a `kinetic undercooling' boundary condition. We study the linear stability of uniformly translating circles that solve the problem in two dimensions. In a space of smooth perturbations of the circular shape, the stability operator is found to have a pure point spectrum. Except for the zero eigenvalue for infinitesimal translations, all eigenvalues are shown to have negative real part. Therefore perturbations decay exponentially in time. We calculate the spectrum through a combination of asymptotic and series evaluation. In the limit of vanishing regularization parameter, all eigenvalues are found to approach zero in a singular fashion, and this asymptotic behavior is worked out in detail. A consideration of the eigenfunctions indicates that a strong intermediate growth may occur for generic initial perturbations. Both the linear and the nonlinear initial value problem are considered in a second paper.Comment: 37 pages, 6 figures, revised for Physica

    Post-COVID-19 fatigue and health-related quality of life in Saudi Arabia: a population-based study

    Get PDF
    BackgroundDespite substantial literature on symptoms and long-term health implications associated with COVID-19; prevalence and determinants of post-acute COVID-19 fatigue (PCF) remain largely elusive and understudied, with scant research documenting health-related quality of life (HRQoL). Hence, prevalence of PCF and its associated factors, and HRQoL among those who have survived Covid-19 within the general population of Saudi Arabia (KSA) is the subject under examination in this research.MethodsThis cross-sectional study was conducted on 2063 individuals, selected from the KSA’s general population, using a non-probability sampling approach. An online survey was used to employ a self-administered questionnaire to the participants, which included socio-demographic information, the patient’s COVID-19 infection history, 12-item Short Form Health Survey (SF-12) to assess quality of life, and Chalder Fatigue Scale (CFS) (CFQ 11) to evaluate the extent and severity of fatigue. Data were analyzed using SPSS version 26. A p < 0.05 was considered to be strong evidence against the null hypothesis.ResultsThe median age of participants was 34 (IQR = 22) years, with females comprising the majority (66.2%). According to the SF-12 questionnaire, 91.2% of patients experienced physical conditions, and 77% experienced depression. The prevalence of PCF was 52% on CFQ 11 scale. Female gender, higher levels of education, a pre-existing history of chronic disease, as well as the manifestations of shortness of breath and confusion during acute COVID-19 infection, were identified as independent predictors of fatigue.ConclusionTo facilitate timely and effective intervention for post-acute COVID-19 fatigue, it is essential to continuously monitor the individuals who have recovered from acute COVID-19 infection. Also, it is critical to raise health-education among these patients to improve their quality of life. Future research is required to determine whether COVID-19 survivors would experience fatigue for an extended duration and the impact of existing interventions on its prevalence and severity

    IL1B Induced Smad 7 Negatively Regulates Gastrin Expression

    Get PDF
    BACKGROUND: Helicobacter pylori elicited IL1B is one of the various modulators responsible for perturbation of acid secretion in gut. We have earlier reported that IL1B activated NFkB downregulates gastrin, a major modulator of acid secretion. However, we hypothesized that regulation of gastrin by IL1B would depend on the cell's ability to integrate inputs from multiple signaling pathways to generate appropriate biological response. PRINCIPAL FINDING: In this study, we report that IL1B induces Smad 7 expression by about 4.5 fold in gastric carcinoma cell line, AGS. Smad 7 resulted in transcriptional repression of gastrin promoter by about 6.5 fold when co-transfected with Smad 7 expression vector and gastrin-promoter luciferase in AGS cells. IL1B inhibited phosphorylation of Smad 3 and subsequently interfered with nuclear translocation of the positive Smad complex, thus occluding it off the gastrin promoter. IL1B promoter polymorphisms (-511T/-31C IL1B) are known to be associated with H. pylori associated gastro-duodenal ulcer. We observed that IL1B expressed from -31T promoter driven IL1B cDNA elicited 3.5 fold more Smad 7 than that expressed from the IL1B-31C variant in AGS cells. This differential activation of Smad 7 by IL1B promoter variants translated into differential downregulation of gastrin expression. We further analyzed Smad 7, NFkB, IL1B and gastrin expression in antral gut biopsy samples of patients with H. pylori associated duodenal ulcer and normal individuals. We observed that individuals with duodenal ulcer had significantly lower levels of IL1B, Smad 7, NFkB and corresponding higher level of gastrin expression. CONCLUSION: Pro-inflammatory cytokine IL1B repress gastrin expression by activating Smad 7 and subsequent inhibition of nuclear localization of Smad 3/4 complex. Polymorphic promoter variants of IL1B gene can modulate the IL1B expression which resulted in differential activation Smad 7 and consequent repression of gastrin expression, respectively. Analysis of H. pylori infected duodenal ulcer patient's gut biopsy samples also supported this observation

    Comprehensive analysis of temporal alterations in cellular proteome of bacillus subtilis under curcumin treatment

    Get PDF
    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division

    Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives

    Full text link
    corecore