199 research outputs found

    Exploration of Finite 2D Square Grid by a Metamorphic Robotic System

    Full text link
    We consider exploration of finite 2D square grid by a metamorphic robotic system consisting of anonymous oblivious modules. The number of possible shapes of a metamorphic robotic system grows as the number of modules increases. The shape of the system serves as its memory and shows its functionality. We consider the effect of global compass on the minimum number of modules necessary to explore a finite 2D square grid. We show that if the modules agree on the directions (north, south, east, and west), three modules are necessary and sufficient for exploration from an arbitrary initial configuration, otherwise five modules are necessary and sufficient for restricted initial configurations

    Updates of the KArLE Experiment: New Libs Calibration Under High Vacuum for the Quantification of Potassium in Basalt for In Situ Geochronology

    Get PDF
    In planetary exploration, in situ absolute geochronology is one of the main important measurements that needs to be accomplished. Until now, on Mars, the age of the surface is only determined by crater density counting, which gives relative ages. These ages can have a lot of uncertainty as they depend on many parameters. More than that, the curves must be ties to absolute ages. Thus far, only the lost lander Beagle 2 was designed to conduct absolute geochronology measurements, though some recent attempts using MSL Curiosity show that this investigation is feasible and should be strongly encouraged for future flight. Experimental: The Potassium (K)-Argon Laser Experiment (KArLE) is being developed at MSFC through the NASA Planetary Instrument Definition and Development Program (PIDDP). The goal of this experiment is to provide in situ geochronology based on the K-Ar method. A laser ablates a rock under high vacuum, creating a plasma which is sensed by an optical spectrometer to do Laser Induced Breakdown Spectroscopy (LIBS). The ablated material frees gases, including radiogenic 40Ar,which is measured by a mass spectrometer (MS). As the potassium is a content and the 40Ar is a quantity, the ablated mass needed in order to relate them. The mass is given by the product of the ablated volume by the density of this material. So we determine the mineralogy of the ablated material with the LIBS spectra and images and calculate its density. The volume of the pit is measured by using microscopy. LIBS measurement of K under high vacuum: Three independant projects [1, 2, 3] including KArLE, are developing geochronological instruments based on this LA-LIBS-MS method. Despite several differences in their setup, all of them have validated the methods with analyses and ages. However, they all described difficulties with the LIBS measurements of K [3,4]. At ambient pressure, the quantification of K by LIBS on geological materials can be accurate [5]. However the protocol of the LA-LIBS-MS experiment required hundreds of shots under high vacuum in order to free enough 40Ar* to be measured by the QMS. This long duration of ablation may induces significant changes in the LIBS spectra. The pressure may increases by orders of magnitudewithin the chamber and the laser pit geometry can change the effectiveness of ablation and intensity of plasma light received. These effects introduce variation between the first and last spectra and so the quantification of K is more complex. The ablation of one crater can give, depending on the protocol of acquisition, from tens to hundreds of spectra. Protocol and results: We are in the process of further characterizing the variation introduced into LIBS spectra by the use of hundreds of laser shots, and definining a protocol that can be used to ensure accuracy and reporoducibility in the results.We are using natural rock powder standards fused in a furnace, as well as mars analog samples with known K content. We will show the result of the calibration and some new statistical approaches in order to apprehend the effects of the long time ablation on rocks under high vacuum

    Relationship Between LIBS Ablation and Pit Volume for Geologic Samples: Applications for the In Situ Absolute Geochronology

    Get PDF
    These first results demonstrate that LIBS spectra can be an interesting tool to estimate the ablated volume. When the ablated volume is bigger than 9.10(exp 6) cubic micrometers, this method has less than 10% of uncertainties. Far enough to be directly implemented in the KArLE experiment protocol. Nevertheless, depending on the samples and their mean grain size, the difficulty to have homogeneous spectra will increase with the ablated volume. Several K-Ar dating studies based on this approach will be implemented. After that, the results will be shown and discussed

    Prototype tests for the ALICE TRD

    Full text link
    A Transition Radiation Detector (TRD) has been designed to improve the electron identification and trigger capability of the ALICE experiment at the Large Hadron Collider (LHC) at CERN. We present results from tests of a prototype of the TRD concerning pion rejection for different methods of analysis over a momentum range from 0.7 to 2 GeV/c. We investigate the performance of different radiator types, composed of foils, fibres and foams.Comment: Presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, October 15-20, 2000 (accepted for publication in IEEE TNS), Latex (IEEEtran.cls), 7 pages, 11 eps figure

    Analysis of kaon spectra at SIS energies - what remains from the KN potential

    Full text link
    We study the reaction Au+Au at 1.48 AGeV and analyze the influence of the KN optical potential on cm spectra and azimuthal distributions at mid-rapidity. We find a significant change of the yields but only slight changes in the shapes of the distributions when turning off the optical potential. However, the spectra show contributions from different reaction times, where early kaons contribute stronger to higher momenta and late kaons to lower momenta. Azimuthal distributions of the kaons at mid-rapidity show a strong centrality dependence. Their shape is influenced by the KN optical potential as well as by re-scattering.Comment: SQM 2003 proceedings, 4 figures, 6 page

    Isospin-tracing: A probe of non-equilibrium in central heavy-ion collisions

    Get PDF
    Four different combinations of 4496^{96}_{44}Ru and 4096^{96}_{40}Zr nuclei, both as projectile and target, were investigated at the same bombarding energy of 400AA MeV using a 4π4 \pi detector. The degree of isospin mixing between projectile and target nucleons is mapped across a large portion of the phase space using two different isospin-tracer observables, the number of measured protons and the t/3He{\rm t}/^{3}{\rm He} yield ratio. The experimental results show that the global equilibrium is not reached even in the most central collisions. Quantitative measures of stopping and mixing are extracted from the data. They are found to exhibit a quite strong sensitivity to the in-medium (n,n) cross section used in microscopic transport calculations.Comment: 4 pages RevTeX, 3 figures (ps files), submitted to Phys. Rev. Let

    Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The production of deuterons and antideuterons in the transverse momentum range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A coalescence analysis comparing the deuteron and antideuteron spectra with those of protons and antiprotons, has been performed. The coalescence probability is equal for both deuterons and antideuterons and increases as a function of p_T, which is consistent with an expanding collision zone. Comparing (anti)proton yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/- 0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Mid-Rapidity Direct-Photon Production in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    A measurement of direct photons in p+p collisions at sqrt(s)=200 GeV is presented. A photon excess above background from pi^0 --> gamma+gamma, eta --> gamma+gamma, and other decays is observed in the transverse momentum range 5.5 < p_T < 7 GeV/c. The result is compared to a next-to-leading-order perturbative QCD calculation. Within errors, good agreement is found between the QCD calculation and the measured result.Comment: 330 authors, 7 pages text, RevTeX, 2 figures, 2 tables. Submitted to Physical Review D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore