382 research outputs found

    Is your article EV-TRACKed?

    Get PDF
    The EV-TRACK knowledgebase is developed to cope with the need for transparency and rigour to increase reproducibility and facilitate standardization of extracellular vesicle (EV) research. The knowledgebase includes a checklist for authors and editors intended to improve the transparency of methodological aspects of EV experiments, allows queries and meta-analysis of EV experiments and keeps track of the current state of the art. Widespread implementation by the EV research community is key to its success

    Logistic regression with sparse common and distinctive covariates

    Get PDF
    Having large sets of predictor variables from multiple sources concerning the same individuals is becoming increasingly common in behavioral research. On top of the variable selection problem, predicting a categorical outcome using such data gives rise to an additional challenge of identifying the processes at play underneath the predictors. These processes are of particular interest in the setting of multi-source data because they can either be associated individually with a single data source or jointly with multiple sources. Although many methods have addressed the classification problem in high dimensionality, the additional challenge of distinguishing such underlying predictor processes from multi-source data has not received sufficient attention. To this end, we propose the method of Sparse Common and Distinctive Covariates Logistic Regression (SCD-Cov-logR). The method is a multi-source extension of principal covariates regression that combines with generalized linear modeling framework to allow classification of a categorical outcome. In a simulation study, SCD-Cov-logR resulted in outperformance compared to related methods commonly used in behavioral sciences. We also demonstrate the practical usage of the method under an empirical dataset

    Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva

    Get PDF
    Background: Ultrafine particles (< 100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Methods: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Results: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+ 28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI: 10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Conclusions: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva

    Luminescence of Ce3+ multicenters in Ca2+ -Mg2+ -Si4+ based garnet phosphors

    No full text
    Comparison of the luminescent properties of Ca3Sc2Si3O12: Ce and Ca2YMgScSi3O12: Ce single crystalline films (SCF) phosphors, grown by the liquid phase epitaxy method, was performed in this work. We have observed formation of the Ce3+ multicenters in Ca3Sc2Si3O12: Ce and Ca2YMgScSi3O12: Ce in the emission and excitation spectra as well as in the decay kinetics of the Ce3+ luminescence in SCFs of these garnets. Such Ce3+ multicenters possess different crystal field strength due to the inhomogeneous local surroundings of the dodecahedral positions of garnet host at the substitution of the octahedral positions by hetero-valence Mg2+ and Sc3+ ions and the tetrahedral positions by Si4+ ions. We confirm the presence of an effective energy transfer between different Ce3+ multicenters in Ce3+ doped Ca3Sc2Si3O12 and Ca2YMgScSi3O12 garnets. The positive trends in variations of the spectroscopic properties of the Ca2YMgScSi3O12: Ce garnet with respect to Ca3Sc2Si3O12: Ce garnet were observed also due to substitution of the dodecahedral sites of the garnet host by Y3+ ions and the octahedral sites by Mg2+ ions, which can be suitable for the development of new converters of white LEDs. Namely, due to the Y3+-Mg2+ doping, the luminescence spectrum of Ce3+ ions in Ca2YMgScSi3O12: Ce SCFs significantly extends in the red range in comparison with the Ca3Sc2Si3O12: Ce SCF counterpart

    Investigation of the efficacy of the short regimen for rifampicin-resistant TB from the STREAM trial

    Get PDF
    Background: The STREAM trial demonstrated that a 9–11-month “short” regimen had non-inferior efficacy and comparable safety to a 20+ month “long” regimen for the treatment of rifampicin-resistant tuberculosis. Imbalance in the components of the composite primary outcome merited further investigation. / Methods: Firstly, the STREAM primary outcomes were mapped to alternatives in current use, including WHO programmatic outcome definitions and other recently proposed modifications for programmatic or research purposes. Secondly, the outcomes were re-classified according to the likelihood that it was a Failure or Relapse (FoR) event on a 5-point Likert scale: Definite, Probable, Possible, Unlikely, and Highly Unlikely. Sensitivity analyses were employed to explore the impact of informative censoring. The protocol-defined modified intention-to-treat (MITT) analysis population was used for all analyses. / Results: Cure on the short regimen ranged from 75.1 to 84.2% across five alternative outcomes. However, between-regimens results did not exceed 1.3% in favor of the long regimen (95% CI upper bound 10.1%), similar to the primary efficacy results from the trial. Considering only Definite or Probable FoR events, there was weak evidence of a higher risk of FoR in the short regimen, HR 2.19 (95%CI 0.90, 5.35), p = 0.076; considering only Definite FoR events, the evidence was stronger, HR 3.53 (95%CI 1.05, 11.87), p = 0.030. Cumulative number of grade 3–4 AEs was the strongest predictor of censoring. Considering a larger effect of informative censoring attenuated treatment differences, although 95% CI were very wide. / Conclusion: Five alternative outcome definitions gave similar overall results. The risk of failure or relapse (FoR) may be higher in the short regimen than in the long regimen, highlighting the importance of how loss to follow-up and other censoring is accounted for in analyses. The outcome of time to FoR should be considered as a primary outcome for future drug-sensitive and drug-resistant TB treatment trials, provided sensitivity analyses exploring the impact of departures from independent censoring are also included

    Nonlinear optical spectroscopy and two-photon excited fluorescence spectroscopy reveal the excited states of fluorophores embedded in a beetle's elytra

    Get PDF
    This is the author accepted manuscript. The final version is available via the DOI in this record.Upon illumination by ultraviolet light, many animal species emit light through fluorescence processes arising from fluorophores embedded within their biological tissues. Fluorescence studies in living organisms are however relatively scarce and so far limited to the linear regime. Multiphoton excitation fluorescence analyses as well as nonlinear optical techniques offer unique possibilities to investigate the effects of the local environment on the excited states of fluorophores. Herein, these techniques are applied for the first time to study of the naturally controlled fluorescence in insects. The case of the male Hoplia coerulea beetle is investigated because the scales covering the beetle's elytra are known to possess an internal photonic structure with embedded fluorophores, which controls both the beetle's coloration and the fluorescence emission. An intense two-photon excitation fluorescence signal is observed, the intensity of which changes upon contact with water. A third-harmonic generation signal is also detected, the intensity of which depends on the light polarization state. The analysis of these nonlinear optical and fluorescent responses unveils the multi-excited states character of the fluorophore molecules embedded in the beetle's elytra. The role of form anisotropy in the photonic structure, which causes additional tailoring of the beetle's optical responses, is demonstrated by circularly polarized light and nonlinear optical measurements.Wallonia–Brussels InternationalBelgian National Fund for Scientific Research2018 Biomimetics Travel AwardFWO FlandersHercules FoundationAction de Recherche ConcerteNanoscale Quantum OpticsFRSFNRSMinistry of Science, Republic of Serbi
    • …
    corecore