272 research outputs found

    An Experiment on Bare-Metal BigData Provisioning

    Full text link
    Many BigData customers use on-demand platforms in the cloud, where they can get a dedicated virtual cluster in a couple of minutes and pay only for the time they use. Increasingly, there is a demand for bare-metal bigdata solutions for applications that cannot tolerate the unpredictability and performance degradation of virtualized systems. Existing bare-metal solutions can introduce delays of 10s of minutes to provision a cluster by installing operating systems and applications on the local disks of servers. This has motivated recent research developing sophisticated mechanisms to optimize this installation. These approaches assume that using network mounted boot disks incur unacceptable run-time overhead. Our analysis suggest that while this assumption is true for application data, it is incorrect for operating systems and applications, and network mounting the boot disk and applications result in negligible run-time impact while leading to faster provisioning time.This research was supported in part by the MassTech Collaborative Research Matching Grant Program, NSF awards 1347525 and 1414119 and several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    Reducing data movement costs using energy-efficient, active computation on ssd

    Get PDF
    ABSTRACT Modern scientific discovery often involves running complex application simulations on supercomputers, followed by a sequence of data analysis tasks on smaller clusters. This offline approach suffers from significant data movement costs such as redundant I/O, storage bandwidth bottleneck, and wasted CPU cycles, all of which contribute to increased energy consumption and delayed end-toend performance. Technology projections for an exascale machine indicate that energy-efficiency will become the primary design metric. It is estimated that the energy cost of data movement will soon rival the cost of computation. Consequently, we can no longer ignore the data movement costs in data analysis. To address these challenges, we advocate executing data analysis tasks on emerging storage devices, such as SSDs. Typically, in extreme-scale systems, SSDs serve only as a temporary storage system for the simulation output data. In our approach, Active Flash, we propose to conduct in-situ data analysis on the SSD controller without degrading the performance of the simulation job. By migrating analysis tasks closer to where the data resides, it helps reduce the data movement cost. We present detailed energy and performance models for both active flash and offline strategies, and study them using extreme-scale application simulations, commonly used data analytics kernels, and supercomputer system configurations. Our evaluation suggests that active flash is a promising approach to alleviate the storage bandwidth bottleneck, reduce the data movement cost, and improve the overall energy efficiency

    A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia

    Get PDF
    International audienceRelevant preclinical mouse models are crucial to screen new therapeutic agents for acute myeloid leukemia (AML). Current in vivo models based on the use of patient samples are not easy to establish and manipulate in the laboratory. Our objective was to develop robust xenograft models of human AML using well-characterized cell lines as a more accessible and faster alternative to those incorporating the use of patient-derived AML cells. Five widely used AML cell lines representing various AML subtypes were transplanted and expanded into highly immunodeficient non-obese diabetic/LtSz-severe combined immunodeficiency IL2R gamma(null)(c) mice (for example, cell line-derived xenografts). We show here that bone marrow sublethal conditioning with busulfan or irradiation has equal efficiency for the xenotransplantation of AML cell lines. Although higher number of injected AML cells did not change tumor engraftment in bone marrow and spleen, it significantly reduced the overall survival in mice for all tested AML cell lines. On the basis of AML cell characteristics, these models also exhibited a broad range of overall mouse survival, engraftment, tissue infiltration and aggressiveness. Thus, we have established a robust, rapid and straightforward in vivo model based on engraftment behavior of AML cell lines, all vital prerequisites for testing new therapeutic agents in preclinical studies

    Effect of base–acid properties of the mixtures of water with methanol on the solution enthalpy of selected cyclic ethers in this mixture at 298.15 K

    Get PDF
    The enthalpies of solution of cyclic ethers: 1,4- dioxane, 12-crown-4 and 18-crown-6 in the mixture of water and methanol have been measured within the whole mole fraction range at T = 298.15 K. Based on the obtained data, the effect of base–acid properties of water– methanol mixtures on the solution enthalpy of cyclic ethers in these mixtures has been analyzed. The solution enthalpy of cyclic ethers depends on acid properties of water– methanol mixtures in the range of high and medium water contents in the mixture. Based on the analysis performed, it can be assumed that in the mixtures of high methanol contents, cyclic ethe

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome

    Targeting FGFR4 Inhibits Hepatocellular Carcinoma in Preclinical Mouse Models

    Get PDF
    The fibroblast growth factor (FGF)-FGF receptor (FGFR) signaling system plays critical roles in a variety of normal developmental and physiological processes. It is also well documented that dysregulation of FGF-FGFR signaling may have important roles in tumor development and progression. The FGFR4–FGF19 signaling axis has been implicated in the development of hepatocellular carcinomas (HCCs) in mice, and potentially in humans. In this study, we demonstrate that FGFR4 is required for hepatocarcinogenesis; the progeny of FGF19 transgenic mice, which have previously been shown to develop HCCs, bred with FGFR4 knockout mice fail to develop liver tumors. To further test the importance of FGFR4 in HCC, we developed a blocking anti-FGFR4 monoclonal antibody (LD1). LD1 inhibited: 1) FGF1 and FGF19 binding to FGFR4, 2) FGFR4–mediated signaling, colony formation, and proliferation in vitro, and 3) tumor growth in a preclinical model of liver cancer in vivo. Finally, we show that FGFR4 expression is elevated in several types of cancer, including liver cancer, as compared to normal tissues. These findings suggest a modulatory role for FGFR4 in the development and progression of hepatocellular carcinoma and that FGFR4 may be an important and novel therapeutic target in treating this disease

    Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice, its involvement in human hepatocellular carcinoma (HCC) has not been well investigated. FGF19, a member of the FGF family, has unique specificity for its receptor FGFR4. This study aimed to clarify the involvement of FGF19 in the development of HCC.</p> <p>Methods</p> <p>We investigated human FGF19 and FGFR4 expression in 40 hepatocellular carcinoma specimens using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) analysis and immunohistochemistry. Moreover, we examined the expression and the distribution of FGF19 and FGFR4 in 5 hepatocellular carcinoma cell lines (HepG2, HuH7, HLE, HLF, and JHH7) using RT-PCR and immunohistochemistry. To test the role of the FGF19/FGFR4 system in tumor progression, we used recombinant FGF19 protein and small interfering RNA (siRNA) of <it>FGF19 </it>and <it>FGFR4 </it>to regulate their concentrations.</p> <p>Results</p> <p>We found that FGF19 was significantly overexpressed in HCCs as compared with corresponding noncancerous liver tissue (<it>P </it>< 0.05). Univariate and multivariate analyses revealed that the tumor <it>FGF19 </it>mRNA expression was an independent prognostic factor for overall and disease-free survival. Moreover, we found that the FGF19 recombinant protein could increase the proliferation (<it>P </it>< 0.01, <it>n </it>= 12) and invasion (<it>P </it>< 0.01, <it>n </it>= 6) capabilities of human hepatocellular carcinoma cell lines and inhibited their apoptosis (<it>P </it>< 0.01, <it>n </it>= 12). Inversely, decreasing <it>FGF19 </it>and <it>FGFR4 </it>expression by siRNA significantly inhibited proliferation and increased apoptosis in JHH7 cells (<it>P </it>< 0.01, <it>n </it>= 12). The postoperative serum FGF19 levels in HCC patients was significantly lower than the preoperative levels (<it>P </it>< 0.01, <it>n </it>= 29).</p> <p>Conclusions</p> <p>FGF19 is critically involved in the development of HCCs. Targeting FGF19 inhibition is an attractive potential therapeutic strategy for HCC.</p

    Inhibition of Fibroblast Growth by Notch1 Signaling Is Mediated by Induction of Wnt11-Dependent WISP-1

    Get PDF
    Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM). They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1Flox/Flox) embryonic fibroblasts (MEFs). Notch1-deficient (Notch1−/−) MEFs displayed faster growth and motility rate compared to Notch1Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1) in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441), which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1). Functionally, “Notch-activated” stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4) in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression
    corecore