74 research outputs found

    Small gain theorems for large scale systems and construction of ISS Lyapunov functions

    Full text link
    We consider interconnections of n nonlinear subsystems in the input-to-state stability (ISS) framework. For each subsystem an ISS Lyapunov function is given that treats the other subsystems as independent inputs. A gain matrix is used to encode the mutual dependencies of the systems in the network. Under a small gain assumption on the monotone operator induced by the gain matrix, a locally Lipschitz continuous ISS Lyapunov function is obtained constructively for the entire network by appropriately scaling the individual Lyapunov functions for the subsystems. The results are obtained in a general formulation of ISS, the cases of summation, maximization and separation with respect to external gains are obtained as corollaries.Comment: provisionally accepted by SIAM Journal on Control and Optimizatio

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page

    Uniform bounded input bounded output stability of fractional‐order delay nonlinear systems with input

    Get PDF
    The bounded input bounded output (BIBO) stability for a nonlinear Caputo fractional system with time-varying bounded delay and nonlinear output is studied. Utilizing the Razumikhin method, Lyapunov functions and appropriate fractional derivatives of Lyapunov functions some new bounded input bounded output stability criteria are derived. Also, explicit and independent on the initial time bounds of the output are provided. Uniform BIBO stability and uniform BIBO stability with input threshold are studied. A numerical simulation is carried out to show the system’s dynamic response, and demonstrate the effectiveness of our theoretical results.publishe

    Well-posedness and robust stability of a nonlinear ODE-PDE system

    Full text link
    This work studies stability and robustness of a nonlinear system given as an interconnection of an ODE and a parabolic PDE subjected to external disturbances entering through the boundary conditions of the parabolic equation. To this end we develop an approach for a construction of a suitable coercive Lyapunov function as one of the main results. Based on this Lyapunov function we establish the well-posedness of the considered system and establish conditions that guarantee the ISS property. ISS estimates are derived explicitly for the particular case of globally Lipschitz nonlinearities.Comment: 41 page

    Roughness of dichotomy for the interconnected system of operator-differential equations

    Full text link
    The paper is devoted to obtaining conditions for the roughness of dichotomy in the Banach spaces. Deep analysis of the well known papers was considered. The main results also works for the case of unbounded operators

    Robustness of Delayed Multistable Systems with Application to Droop-Controlled Inverter-Based Microgrids

    Get PDF
    Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given
    corecore