14,814 research outputs found

    Constraints on Lorentz Invariance Violation using INTEGRAL/IBIS observations of GRB041219A

    Get PDF
    One of the experimental tests of Lorentz invariance violation is to measure the helicity dependence of the propagation velocity of photons originating in distant cosmological obejcts. Using a recent determination of the distance of the Gamma-Ray Burst GRB 041219A, for which a high degree of polarization is observed in the prompt emission, we are able to improve by 4 orders of magnitude the existing constraint on Lorentz invariance violation, arising from the phenomenon of vacuum birefringence.Comment: 5 pages, 3 figures, accepted for publication as a Rapid Communication in Physical Review

    Good Pond Fishing is No Accident

    Get PDF
    There are approximately 100,000 ponds (also called stock dams) in South Dakota; 48,000 contain fish. Most ponds are privately owned and are on ranches in western and central South Dakota. Ponds must be managed if they are to provide quality angling. And if properly managed, they can provide memorable fishing year after year. A common misconception is that a pond can have it all, that it can be stocked with any and all fish species and that the fishing will be good for all species. It is more likely that fishing may not be good for any species. In reality, you must decide what you want and choose that management option that best fits your needs. We present the following key and discussion to help you decide the best pond management strategy for you. Start with Number 1 in the key and follow the directions after the answer that best fits you and your pond

    Developing enterprise culture in a northern educational authority in the UK: involving trainee teachers in learning-orientated evaluation

    Get PDF
    In this paper we discuss our use of innovative methods - at least in the context of regeneration evaluation - to help evaluate an enterprise project in northern England, paying particular attention to the involvement of trainee teachers. We discuss the methods used and critically appraise the methods and methodology, present some emerging findings from the trainee teachers strand and conclude by discussing the place of what might be termed 'learning-orientated evaluation' in relation to the currently dominant output-focussed evaluation paradigm.</p

    The motor-visual effects of apertures on a 20/20 acuity field at a 40 cm viewing distance

    Get PDF
    The motor-visual effects of apertures on a 20/20 acuity field at a 40 cm viewing distanc

    Statistics of the largest geomagnetic storms per solar cycle (1844-1993)

    No full text
    International audienceA previous application of extreme-value statistics to the first, second and third largest geomagnetic storms per solar cycle for nine solar cycles is extended to fourteen solar cycles (1844?1993). The intensity of a geomagnetic storm is measured by the magnitude of the daily aa index, rather than the half-daily aa index used previously. Values of the conventional aa index (1868?1993), supplemented by the Helsinki Ak index (1844?1880), provide an almost continuous, and largely homogeneous, daily measure of geomagnetic activity over an interval of 150 years. As in the earlier investigation, analytic expressions giving the probabilities of the three greatest storms (extreme values) per solar cycle, as continuous functions of storm magnitude (aa), are obtained by least-squares fitting of the observations to the appropriate theoretical extreme-value probability functions. These expressions are used to obtain the statistical characteristics of the extreme values; namely, the mode, median, mean, standard deviation and relative dispersion. Since the Ak index may not provide an entirely homogeneous extension of the aa index, the statistical analysis is performed separately for twelve solar cycles (1868?1993), as well as nine solar cycles (1868?1967). The results are utilized to determine the expected ranges of the extreme values as a function of the number of solar cycles. For fourteen solar cycles, the expected ranges of the daily aa index for the first, second and third largest geomagnetic storms per solar cycle decrease monotonically in magnitude, contrary to the situation for the half-daily aa index over nine solar cycles. The observed range of the first extreme daily aa index for fourteen solar cycles is 159?352 nT and for twelve solar cycles is 215?352 nT. In a group of 100 solar cycles the expected ranges are expanded to 137?539 and 177?511 nT, which represent increases of 108% and 144% in the respective ranges. Thus there is at least a 99% probability that the daily aa index will satisfy the condition aa < 550 for the largest geomagnetic storm in the next 100 solar cycles. The statistical analysis is used to infer that remarkable conjugate auroral observations on the night of 16 September 1770, which were recorded during the first voyage of Captain Cook to Australia, occurred during an intense geomagnetic storm

    Kinematic dynamo action in a sphere: Effects of periodic time-dependent flows on solutions with axial dipole symmetry

    Full text link
    Choosing a simple class of flows, with characteristics that may be present in the Earth's core, we study the ability to generate a magnetic field when the flow is permitted to oscillate periodically in time. The flow characteristics are parameterised by D, representing a differential rotation, M, a meridional circulation, and C, a component characterising convective rolls. Dynamo action is sensitive to these flow parameters and fails spectacularly for much of the parameter space where magnetic flux is concentrated into small regions. Oscillations of the flow are introduced by varying the flow parameters in time, defining a closed orbit in the space (D,M). Time-dependence appears to smooth out flux concentrations, often enhancing dynamo action. Dynamo action can be impaired, however, when flux concentrations of opposite signs occur close together as smoothing destroys the flux by cancellation. It is possible to produce geomagnetic-type reversals by making the orbit stray into a region where the steady flows generate oscillatory fields. In this case, however, dynamo action was not found to be enhanced by the time-dependence. A novel approach is taken to solving the time-dependent eigenvalue problem, where by combining Floquet theory with a matrix-free Krylov-subspace method we avoid large memory requirements for storing the matrix required by the standard approach.Comment: 22 pages, 12 figures. Geophys. Astrophys. Fluid Dynam., as accepted (2004

    Calibrating AIS images using the surface as a reference

    Get PDF
    A method of evaluating the initial assumptions and uncertainties of the physical connection between Airborne Imaging Spectrometer (AIS) image data and laboratory/field spectrometer data was tested. The Tuscon AIS-2 image connects to lab reference spectra by an alignment to the image spectral endmembers through a system gain and offset for each band. Images were calibrated to reflectance so as to transform the image into a measure that is independent of the solar radiant flux. This transformation also makes the image spectra directly comparable to data from lab and field spectrometers. A method was tested for calibrating AIS images using the surface as a reference. The surface heterogeneity is defined by lab/field spectral measurements. It was found that the Tuscon AIS-2 image is consistent with each of the initial hypotheses: (1) that the AIS-2 instrument calibration is nearly linear; (2) the spectral variance is caused by sub-pixel mixtures of spectrally distinct materials and shade, and (3) that sub-pixel mixtures can be treated as linear mixtures of pure endmembers. It was also found that the image can be characterized by relatively few endmembers using the AIS-2 spectra

    Uncertainties in field-line tracing in the magnetosphere. <br>Part II: the complete internal geomagnetic field

    No full text
    International audienceThe discussion in the preceding paper is restricted to the uncertainties in magnetic-field-line tracing in the magnetosphere resulting from published standard errors in the spherical harmonic coefficients that define the axisymmetric part of the internal geomagnetic field (i.e. gn0 ± ?gn0). Numerical estimates of these uncertainties based on an analytic equation for axisymmetric field lines are in excellent agreement with independent computational estimates based on stepwise numerical integration along magnetic field lines. This comparison confirms the accuracy of the computer program used in the present paper to estimate the uncertainties in magnetic-field-line tracing that arise from published standard errors in the full set of spherical harmonic coefficients, which define the complete (non-axisymmetric) internal geomagnetic field (i.e. gnm ± ?gnm and hnm ± ?hnm). An algorithm is formulated that greatly reduces the computing time required to estimate these uncertainties in magnetic-field-line tracing. The validity of this algorithm is checked numerically for both the axisymmetric part of the internal geomagnetic field in the general case (1 ? n ? 10) and the complete internal geomagnetic field in a restrictive case (0 ? m ? n, 1 ? n ? 3). On this basis it is assumed that the algorithm can be used with confidence in those cases for which the computing time would otherwise be prohibitively long. For the complete internal geomagnetic field, the maximum characteristic uncertainty in the geocentric distance of a field line that crosses the geomagnetic equator at a nominal dipolar distance of 2 RE is typically 100 km. The corresponding characteristic uncertainty for a field line that crosses the geomagnetic equator at a nominal dipolar distance of 6 RE is typically 500 km. Histograms and scatter plots showing the characteristic uncertainties associated with magnetic-field-line tracing in the magnetosphere are presented for a range of illustrative examples. Finally, estimates are given for the maximum uncertainties in the locations of the conjugate points of selected geophysical observatories. Numerical estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, including the associated uncertainties in the locations of the conjugate points of geophysical observatories, should be regarded as "first approximations'' in the sense that these estimates are only as accurate as the published standard errors in the full set of spherical harmonic coefficients. As in the preceding paper, however, all computational techniques developed in this paper can be used to derive more realistic estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, following further progress in the determination of more accurate standard errors in the spherical harmonic coefficients

    Shocked Molecular Hydrogen in the 3C 326 Radio Galaxy System

    Full text link
    The Spitzer spectrum of the giant FR II radio galaxy 3C 326 is dominated by very strong molecular hydrogen emission lines on a faint IR continuum. The H2 emission originates in the northern component of a double-galaxy system associated with 3C 326. The integrated luminosity in H2 pure-rotational lines is 8.0E41 erg/s, which corresponds to 17% of the 8-70 micron luminosity of the galaxy. A wide range of temperatures (125-1000 K) is measured from the H2 0-0 S(0)-S(7) transitions, leading to a warm H2 mass of 1.1E9 Msun. Low-excitation ionic forbidden emission lines are consistent with an optical LINER classification for the active nucleus, which is not luminous enough to power the observed H2 emission. The H2 could be shock-heated by the radio jets, but there is no direct indication of this. More likely, the H2 is shock-heated in a tidal accretion flow induced by interaction with the southern companion galaxy. The latter scenario is supported by an irregular morphology, tidal bridge, and possible tidal tail imaged with IRAC at 3-9 micron. Unlike ULIRGs, which in some cases exhibit H2 line luminosities of comparable strength, 3C 326 shows little star-formation activity (~0.1 Msun/yr). This may represent an important stage in galaxy evolution. Starburst activity and efficient accretion onto the central supermassive black hole may be delayed until the shock-heated H2 can kinematically settle and coolComment: 27 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Careif Position Statement on Migration and Mental Health

    Get PDF
    People have moved from one place to another within the same country or across national borders for millennia. The reasons for such movements have varied, as does the duration for which people migrate. With globalisation and global connections across countries, migration has increased. The process of migration and its impact on the mental health of individuals has been and will remain heterogeneous. The responses of migrants to the process vary, depending upon a number of factors. Individuals may migrate individually, with their families or in groups. They may move to avoid political or religious persecution and seek political asylum in another country (forced migration) or migrate for personal, employment, economic or educational reasons (voluntary migration). Although these two categorisations are often a little more complex than this. Not all migrants will feel negatively affected by migration. People may migrate on a seasonal, recurrent, permanent or temporary basis. It may be within or across generations. Many migrants will never access mental health services, whilst others may use these in varying ways and with diverse requirements or presentations. The experiences and requirements of voluntary and involuntary migrants may differ. Mental health Services may need to ensure that they are accessible and appropriate to all members of society including those who have migrated. This paper makes some suggestions in relation to this
    corecore