2,985 research outputs found

    An experience of modularity through design

    Get PDF
    We aim to utilise the experiences of a marine industry-based design team to determine the need for research into a modular design methodology in an industrial environment. In order to achieve this we couple the outcome of a current design project with the findings of a recent literature survey with the objectives of firstly, clarifying why a methodology is required and, secondly, defining the key elements which the methodology would have to realise or address. The potential benefits of modularity have long been recognised in the shipbuilding industry. Many shipbuilders adopt a 'module' approach to ship construction whereby the ship structure is separated into a number of large structural 'blocks' to ease manufacture and manoeuvrability during construction. However, as understanding of the capabilities of modularity as a design tool develops there is increased interest in capitalising on the differing life phase benefits of modularity such as reduced design costs and time, increased ease of maintenance, upgrade, re-use, redesign and standardisation across individual products and product families. This is especially pertinent in naval shipbuilding where the maintenance of a class of ship requires that all previously designed ships in that class must be of similar outfitting and must be able to interface with the new ship, in terms of propulsion, weapons, communications and electronics, and thus often require some form of retrofit. Therefore, many shipbuilders are moving from viewing modularity as a purely 'manufacturing' principle to a design centred principle. However, as noted by Chang and Ward 'none of the design theories or tools in the mechanical world serves as an articulate procedure for designers to follow in practising modular design'. Thus, despite the identification of a need to introduce modular principles at an earlier stage than detail design and construction, there is little aid in the form of tools, techniques and methodologies for designers in practice

    The role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity

    Full text link
    We analyze a detailed model of a Bose-Einstein condensate trapped in a ring optical resonator and contrast its classical and quantum properties to those of a Fabry-P{\'e}rot geometry. The inclusion of two counter-propagating light fields and three matter field modes leads to important differences between the two situations. Specifically, we identify an experimentally realizable region where the system's behavior differs strongly from that of a BEC in a Fabry-P\'{e}rot cavity, and also where quantum corrections become significant. The classical dynamics are rich, and near bifurcation points in the mean-field classical system, the quantum fluctuations have a major impact on the system's dynamics.Comment: 11 pages, 11 figures, submitted to PR

    Photometric Monitoring of the Gravitationally Lensed Ultraluminous BAL Quasar APM08279+5255

    Full text link
    We report on one year of photometric monitoring of the ultraluminous BAL quasar APM 08279+5255. The temporal sampling reveals that this gravitationally lensed system has brightened by ~0.2 mag in 100 days. Two potential causes present themselves; either the variability is intrinsic to the quasar, or it is the result of microlensing by stars in a foreground system. The data is consistent with both hypotheses and further monitoring is required before either case can be conclusively confirmed. We demonstrate, however, that gravitational microlensing can not play a dominant role in explaining the phenomenal properties exhibited by APM 08279+5255. The identification of intrinsic variability, coupled with the simple gravitational lensing configuration, would suggest that APM 08279+5255 is a potential golden lens from which the cosmological parameters can be derived and is worthy of a monitoring program at high spatial resolution.Comment: 17 pages, with 2 figures. Accepted for publication in P.A.S.

    Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing

    Get PDF
    Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process

    Atomic interaction effects in the superradiant light scattering from a Bose-Einstein condensate

    Get PDF
    We investigate the effects of the atomic interaction in the Superradiant Rayleigh scattering from a Bose-Einstein condensate driven by a far-detuned laser beam. We show that for a homogeneous atomic sample the atomic interaction has only a dispersive effect, whereas in the inhomogeneous case it may increase the decay of the matter-wave grating.Comment: 12 pages, 4 figures, presented to the XII International Laser Physics Workshop, August 24-29, Hamburg, to be published in Laser Physic

    Sequential superradiant scattering from atomic Bose-Einstein condensates

    Full text link
    We theoretically discuss several aspects of sequential superradiant scattering from atomic Bose-Einstein condensates. Our treatment is based on the semiclassical description of the process in terms of the Maxwell-Schroedinger equations for the coupled matter-wave and optical fields. First, we investigate sequential scattering in the weak-pulse regime and work out the essential mechanisms responsible for bringing about the characteristic fan-shaped side-mode distribution patterns. Second, we discuss the transition between the Kapitza-Dirac and Bragg regimes of sequential scattering in the strong-pulse regime. Finally, we consider the situation where superradiance is initiated by coherently populating an atomic side mode through Bragg diffraction, as in studies of matter-wave amplification, and describe the effect on the sequential scattering process.Comment: 9 pages, 4 figures. Submitted to Proceedings of LPHYS'06 worksho

    Awareness of cancer symptoms and anticipated help seeking among ethnic minority groups in England

    Get PDF
    <p>Objective: Little is known about ethnic differences in awareness of cancer-warning signs or help-seeking behaviour in Britain. As part of the National Awareness and Early Diagnosis Initiative (NAEDI), this study aimed to explore these factors as possible contributors to delay in cancer diagnosis.</p> <p>Methods: We used quota sampling to recruit 1500 men and women from the six largest minority ethnic groups in England (Indian, Pakistani, Bangladeshi, Caribbean, African and Chinese). In face-to-face interviews, participants completed the newly developed cancer awareness measure (CAM), which includes questions about warning signs for cancer, speed of consultation for possible cancer symptoms and barriers to help seeking.</p> <p>Results: Awareness of warning signs was low across all ethnic groups, especially using the open-ended (recall) question format, with lowest awareness in the African group. Women identified more emotional barriers and men more practical barriers to help seeking, with considerable ethnic variation. Anticipated delay in help seeking was higher in individuals who identified fewer warning signs and more barriers.</p> <p>Conclusions: The study suggests the need for culturally sensitive, community-based interventions to raise awareness and encourage early presentation.</p&gt

    DE Canum Venaticorum : a bright, eclipsing red dwarf–white dwarf binary

    Get PDF
    Context. Close white dwarf–red dwarf binaries must have gone through a common-envelope phase during their evolution. DE CVn is a detached white dwarf–red dwarf binary with a relatively short (∌8.7 h) orbital period. Its brightness and the presence of eclipses makes this system ideal for a more detailed study. Aims. From a study of photometric and spectroscopic observations of DE CVn we derive the system parameters that we discuss in the framework of common-envelope evolution. Methods. Photometric observations of the eclipses are used to determine an accurate ephemeris. From a model fit to an average lowresolution spectrum of DE CVn, we constrain the temperature of the white dwarf and the spectral type of the red dwarf. The eclipse light curve is analysed and combined with the radial velocity curve of the red dwarf determined from time-resolved spectroscopy to derive constraints on the inclination and the masses of the components in the system. Results. The derived ephemeris is HJDmin = 2 452 784.5533(1) + 0.3641394(2) × E. The red dwarf in DE CVn has a spectral type of M3V and the white dwarf has an effective temperature of 8 000 K. The inclination of the system is 86+3◩ −2 and the mass and radius of the red dwarf are 0.41 ± 0.06 M and 0.37+0.06 −0.007 R, respectively, and the mass and radius of the white dwarf are 0.51+0.06 −0.02 M and 0.0136+0.0008 −0.0002 R, respectively. Conclusions. We found that the white dwarf has a hydrogen-rich atmosphere (DA-type). Given that DE CVn has experienced a common-envelope phase, we can reconstruct its evolution and we find that the progenitor of the white dwarf was a relatively lowmass star (M ≀ 1.6 M). The current age of this system is 3.3−7.3 × 109 years, while it will take longer than the Hubble time for DE CVn to evolve into a semi-detached system

    Structure of Colloid-Polymer Suspensions

    Full text link
    We discuss structural correlations in mixtures of free polymer and colloidal particles based on a microscopic, 2-component liquid state integral equation theory. Whereas in the case of polymers much smaller than the spherical particles the relevant polymer degree of freedom is the center of mass, for polymers larger than the (nano-) particles conformational rearrangements need to be considered. They have the important consequence that the polymer depletion layer exhibits two widely different length scales, one of the order of the particle radius, the other of the order of the polymer radius or the polymer density screening length in dilute or semidilute concentrations, respectively. Their consequences on phase stability and structural correlations are discussed extensively.Comment: 37 pages, 17 figures; topical feature articl
    • 

    corecore