339,418 research outputs found
Recommended from our members
Rapid (<5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy.
This study reports a novel microfluidic platform for rapid and long-ranged concentration of rare-pathogen from human blood for subsequent on-chip surface-enhanced Raman spectroscopy (SERS) identification/discrimination of bacteria based on their detected fingerprints. Using a hybrid electrokinetic mechanism, bacteria can be concentrated at the stagnation area on the SERS-active roughened electrode, while blood cells were excluded away from this region at the center of concentric circular electrodes. This electrokinetic approach performs isolation and concentration of bacteria in about three minutes; the density factor is increased approximately a thousand fold in a local area of ~5000 μm(2) from a low bacteria concentration of 5 × 10(3) CFU/ml. Besides, three genera of bacteria, S. aureus, E. coli, and P. aeruginosa that are found in most of the isolated infections in bacteremia were successfully identified in less than one minute on-chip without the use of any antibody/chemical immobilization and reaction processes
ROPocop - Dynamic Mitigation of Code-Reuse Attacks
Control-flow attacks, usually achieved by exploiting a buffer-overflow
vulnerability, have been a serious threat to system security for over fifteen
years. Researchers have answered the threat with various mitigation techniques,
but nevertheless, new exploits that successfully bypass these technologies
still appear on a regular basis.
In this paper, we propose ROPocop, a novel approach for detecting and
preventing the execution of injected code and for mitigating code-reuse attacks
such as return-oriented programming (RoP). ROPocop uses dynamic binary
instrumentation, requiring neither access to source code nor debug symbols or
changes to the operating system. It mitigates attacks by both monitoring the
program counter at potentially dangerous points and by detecting suspicious
program flows.
We have implemented ROPocop for Windows x86 using PIN, a dynamic program
instrumentation framework from Intel. Benchmarks using the SPEC CPU2006 suite
show an average overhead of 2.4x, which is comparable to similar approaches,
which give weaker guarantees. Real-world applications show only an initially
noticeable input lag and no stutter. In our evaluation our tool successfully
detected all 11 of the latest real-world code-reuse exploits, with no false
alarms. Therefore, despite the overhead, it is a viable, temporary solution to
secure critical systems against exploits if a vendor patch is not yet
available
Economics and Hawaii's Marine Fisheries
This paper reviews economic research conducted on Hawaii's marine fisheries over the past ten years. The fisheries development and fisheries management context for this research is also considered. The paper finds that new approaches are required for marine fisheries research in Hawaii: A wider scope to include other marine resource and coastal zone issues, and increased and closer collaboration between researchers and the fishing community
Counterflow dielectrophoresis for trypanosome enrichment and detection in blood
Human African trypanosomiasis or sleeping sickness is a deadly disease endemic in sub-Saharan Africa, caused by single-celled protozoan parasites. Although it has been targeted for elimination by 2020, this will only be realized if diagnosis can be improved to enable identification and treatment of afflicted patients. Existing techniques of detection are restricted by their limited field-applicability, sensitivity and capacity for automation. Microfluidic-based technologies offer the potential for highly sensitive automated devices that could achieve detection at the lowest levels of parasitemia and consequently help in the elimination programme. In this work we implement an electrokinetic technique for the separation of trypanosomes from both mouse and human blood. This technique utilises differences in polarisability between the blood cells and trypanosomes to achieve separation through opposed bi-directional movement (cell counterflow). We combine this enrichment technique with an automated image analysis detection algorithm, negating the need for a human operator
Using percolated dependencies for phrase extraction in SMT
Statistical Machine Translation (SMT) systems rely heavily on the quality of the phrase pairs induced from large amounts of training data. Apart from the widely used method of heuristic learning of n-gram phrase translations from word alignments, there are numerous methods for extracting these phrase pairs. One such class of approaches uses translation information encoded in parallel treebanks to extract phrase pairs. Work to date has demonstrated the usefulness of translation models induced from both constituency structure trees and dependency structure trees. Both syntactic annotations rely on the existence of natural language parsers for both the source and target languages. We depart from the norm by directly obtaining dependency parses from constituency structures using head percolation tables. The paper investigates the use of aligned chunks induced from percolated dependencies in French–English SMT and contrasts it with the aforementioned extracted phrases.
We observe that adding phrase pairs from any other method improves translation performance over the baseline n-gram-based system, percolated dependencies are a good substitute for parsed dependencies, and that supplementing with our novel head percolation-induced chunks shows a general trend toward improving all system types across two data sets up to a 5.26% relative increase in BLEU
Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem
The broadcast scheduling problem asks how a multihop network of broadcast
transceivers operating on a shared medium may share the medium in such a way
that communication over the entire network is possible. This can be naturally
modeled as a graph coloring problem via distance-2 coloring (L(1,1)-labeling,
strict scheduling). This coloring is difficult to compute and may require a
number of colors quadratic in the graph degree. This paper introduces
pseudo-scheduling, a relaxation of distance-2 coloring. Centralized and
decentralized algorithms that compute pseudo-schedules with colors linear in
the graph degree are given and proved.Comment: 8th International Symposium on Algorithms for Sensor Systems,
Wireless Ad Hoc Networks and Autonomous Mobile Entities (ALGOSENSORS 2012),
13-14 September 2012, Ljubljana, Slovenia. 12 page
How to coexist with fire ants: The roles of behaviour and cuticular compounds
tBecause territoriality is energetically costly, territorial animals frequently respond less aggressively toneighbours than to strangers, a reaction known as the “dear enemy phenomenon” (DEP). The contrary,the “nasty neighbour effect” (NNE), occurs mainly for group-living species defending resource-basedterritories. We studied the relationships between supercolonies of the pest fire ant Solenopsis saevissimaand eight ant species able to live in the vicinity of its nests plus Eciton burchellii, an army ant predatorof other ants. The workers from all of the eight ant species behaved submissively when confrontedwith S. saevissima (dominant) individuals, whereas the contrary was never true. Yet, S. saevissima weresubmissive towards E. burchellii workers. Both DEP and NNE were observed for the eight ant species, withsubmissive behaviours less frequent in the case of DEP. To distinguish what is due to chemical cues fromwhat can be attributed to behaviour, we extracted cuticular compounds from all of the nine ant speciescompared and transferred them onto a number of S. saevissima workers that were then confronted withuntreated conspecifics. The cuticular compounds from three species, particularly E. burchellii, triggeredgreater aggressiveness by S. saevissima workers, while those from the other species did not
- …
