6 research outputs found

    Xenopus Meiotic Microtubule-Associated Interactome

    Get PDF
    In metazoan oocytes the assembly of a microtubule-based spindle depends on the activity of a large number of accessory non-tubulin proteins, many of which remain unknown. In this work we isolated the microtubule-bound proteins from Xenopus eggs. Using mass spectrometry we identified 318 proteins, only 43 of which are known to bind microtubules. To integrate our results, we compiled for the first time a network of the meiotic microtubule-related interactome. The map reveals numerous interactions between spindle microtubules and the newly identified non-tubulin spindle components and highlights proteins absent from the mitotic spindle proteome. To validate newly identified spindle components, we expressed as GFP-fusions nine proteins identified by us and for first time demonstrated that Mgc68500, Loc398535, Nif3l1bp1/THOC7, LSM14A/RAP55A, TSGA14/CEP41, Mgc80361 and Mgc81475 are associated with spindles in egg extracts or in somatic cells. Furthermore, we showed that transfection of HeLa cells with siRNAs, corresponding to the human orthologue of Mgc81475 dramatically perturbs spindle formation in HeLa cells. These results show that our approach to the identification of the Xenopus microtubule-associated proteome yielded bona fide factors with a role in spindle assembly

    Trichlorfon exposure, spindle aberrations and nondisjunction in mammalian oocytes

    No full text
    Yin H, Cukurcam S, Betzendahl I, Adler ID, Eichenlaub-Ritter U. Trichlorfon exposure, spindle aberrations and nondisjunction in mammalian oocytes. CHROMOSOMA. 1998;107(6-7):514-522.Consumption of trichlorfon-poisoned fish by women in a small Hungarian village has been associated with trisomy resulting from an error of meiosis B in oogenesis. We therefore examined mouse oocytes exposed for 3 h during fertilization to 50 mu g/ml trichlorfon. Spindle morphology was not visibly altered by the pesticide. Chromosomes segregated normally at anaphase II with no induction of aneuploidy. However, formation of a spindle was disturbed in many oocytes resuming meiosis I in the presence of trichlorfon. In spite of the spindle aberrations and the failure of bivalents to align properly at the equator, oocytes did not become meiotically arrested but progressed to metaphase B. At this stage, spindles were highly abnormal, and chromosomes were often totally unaligned, unattached or dispersed on the elongated and disorganized spindle. By causing spindle aberrations and influencing chromosome congression, trichlorfon appears, therefore, to predispose mammalian oocytes to random chromosome segregation, especially when they undergo a first division and develop to metaphase II during exposure. This is the first case in which environmentally induced human trisomy can be correlated with spindle aberrations induced by chemical exposure. Our observations suggest that oocytes may not possess a checkpoint sensing displacement of chromosomes from the equator at meiosis I and may therefore be prone to nondisjunction

    Influence of follicular fluid meiosis-activating sterol on aneuploidy rate and precocious chromatid segregation in aged mouse oocytes

    No full text
    Cukurcam S, Betzendahl I, Michel G, et al. Influence of follicular fluid meiosis-activating sterol on aneuploidy rate and precocious chromatid segregation in aged mouse oocytes. HUMAN REPRODUCTION. 2007;22(3):815-828.BACKGROUND: Follicular fluid meiosis-activating sterol (FF-MAS) protects young oocytes from precocious chromatid separation (predivision). Reduced expression of cohesion and checkpoint proteins and predivision has been hypothesized to occur in age-related aneuploidy in oocytes. METHODS: To know whether FF-MAS also protects aged oocytes from predivision and from age-related non-disjunction, we analysed chromosome constitution in mouse oocytes matured spontaneously with or without 10 mu M FF-MAS and in hypoxanthine (HX)-arrested young and aged oocytes induced to resume maturation by FF-MAS. Messenger RNA for checkpoint protein MAD2 and cohesion protein SMC1 beta was compared between oocytes matured with or without FF-MAS. RESULTS: Aged oocytes possessed many bivalents with single distal chiasma at meiosis I. Predivision was especially high in aged oocytes cultured sub-optimally to metaphase II in alpha-minimum essential medium (alpha-MEM). FF-MAS reduced predivision significantly (P 0.001). Relative levels of Smc1 beta mRNA appeared increased by maturation in FF-MAS, and mitochondrial clustering was restored. CONCLUSIONS: Sister chromatids of aged oocytes appear to be highly susceptible to precocious chromatid separation, especially when maturation is under sub-optimal conditions, e.g. in the absence of cumulus and FF-MAS. This may relate to some loss of chromatid cohesion during ageing. FF-MAS protects aged oocytes from predivision during maturation, possibly by supporting Smc1 beta expression, thus reducing risks of meiotic errors, but it cannot prevent age-related non-disjunction. Aged oocytes appear prone to loss of co-ordination between nuclear maturation and cytokinesis suggesting age-related relaxed cell cycle control
    corecore