1,265 research outputs found

    Comparison of antimicrobial resistance phenotypes and genotypes in enterotoxigenic Escherichia coli isolated from Australian and Vietnamese pigs

    Get PDF
    This study aimed to compare the antibiogram phenotype and carriage of antimicrobial resistance genes (ARGs) of 97 porcine multidrug-resistant (MDR) enterotoxigenic Escherichia coli (ETEC) isolates obtained from Vietnam and 117 porcine MDR-ETEC obtained from Australia, two countries with different antimicrobial regulation systems. An antimicrobial resistance index (ARI) was calculated to quantify their potential significance to public health. Both Vietnamese and Australian isolates had moderate to high levels of resistance to commonly used antibiotics (ampicillin, tetracycline and sulphonamides). None of the Australian isolates were resistant to fluoroquinolones or third-generation cephalosporins and none possessed associated plasmid-mediated ARGs. However, 23.1% of Australian isolates were resistant to gentamicin owing to ARGs associated with apramycin or neomycin resistance [e.g. aac(3)-IV] that impart cross-resistance to gentamicin. Whilst Vietnamese isolates carried aminoglycoside ARGs, 44.4% of commercial pig isolates were resistant to gentamicin in comparison with 0% of village pig isolates. The plasmid-mediated fluoroquinolone ARG qnrB was commonly detected in Vietnamese isolates (52.3% commercial, 44.1% village), but phenotypic resistance was low (3.2% and 11.8%, respectively). The mean ARI for Vietnamese isolates (26.0) was significantly different (P < 0.001) from the mean ARI for Australian isolates (19.8), primarily reflecting fluoroquinolone resistance in the former collection. This comparison suggests the effectiveness of regulations that slow the dissemination of 'critical' resistance by restricting the availability of important classes of antimicrobials

    Clustering based active learning for evolving data streams

    Get PDF
    Data labeling is an expensive and time-consuming task. Choosing which labels to use is increasingly becoming important. In the active learning setting, a classifier is trained by asking for labels for only a small fraction of all instances. While many works exist that deal with this issue in non-streaming scenarios, few works exist in the data stream setting. In this paper we propose a new active learning approach for evolving data streams based on a pre-clustering step, for selecting the most informative instances for labeling. We consider a batch incremental setting: when a new batch arrives, first we cluster the examples, and then, we select the best instances to train the learner. The clustering approach allows to cover the whole data space avoiding to oversample examples from only few areas. We compare our method w.r.t. state of the art active learning strategies over real datasets. The results highlight the improvement in performance of our proposal. Experiments on parameter sensitivity are also reported

    PNAS plus: plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state

    Get PDF
    The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Class I major histocompatibility complexes loaded by a periodate trigger

    Get PDF
    Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptide−MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptide−MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptide−MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands

    The effects of vaccination and immunity on bacterial infection dynamics in vivo.

    Get PDF
    Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.This work was supported by the Biotechnology and Biological Sciences Research Council [grant number BB/I002189/1].This is the published manuscript. It was originally published by PLOS One here: http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1004359

    Identification and HLA-Tetramer-Validation of Human CD4(+) and CD8(+) T Cell Responses against HCMV Proteins IE1 and IE2

    Get PDF
    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy
    corecore