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Abstract. Data labeling is an expensive and time-consuming task. Choos-
ing which labels to use is increasingly becoming important. In the active
learning setting, a classifier is trained by asking for labels for only a small
fraction of all instances. While many works exist that deal with this issue
in non-streaming scenarios, few works exist in the data stream setting. In
this paper we propose a new active learning approach for evolving data
streams based on a pre-clustering step, for selecting the most informative
instances for labeling. We consider a batch incremental setting: when a
new batch arrives, first we cluster the examples, and then, we select the
best instances to train the learner. The clustering approach allows to
cover the whole data space avoiding to oversample examples from only
few areas. We compare our method w.r.t. state of the art active learning
strategies over real datasets. The results highlight the improvement in
performance of our proposal. Experiments on parameter sensitivity are
also reported.

1 Introduction

Today, large amounts of data are being generated continuously, and we are cre-
ating more data every two days, than all the data we created before 2003 [15].
Data streams pose new serious challenges to the data analysis community. To
learn supervised models, we need to obtain true labels from the instances of
the streams . This labeling phase is usually an expensive and tedious task for
domain experts. Consider, for example, textual news arriving as a data stream.
The goal is to predict if a news item will interest a given user at a given time.
The interests of the user may change over time. To obtain training data, news
need to be labeled as interesting or not interesting. This requires human labor.
For instance, Amazon Mechanical Turk5 provides a marketplace for intelligent
human labeling.

5 https://www.mturk.com
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Labeling can also be costly because it requires expensive, intrusive or destruc-
tive laboratory test. Consider a production process in a chemical plant where
the goal is to predict the quality of production output. The relationship between
input and output quality might change over time due to constant manual tuning,
complementary ingredients or replacement of physical sensors. In order to know
the quality of the output (the true label) a laboratory test needs to be performed
which is costly. Under such conditions it may be unreasonable to require true
labels for all incoming instances.

A way to alleviate this issue is to ask for labels, over time, for only a small
and reasonable portion of the data. The main question then is: How can we
select a good subset of instances for learning a model? Such a learning scenario
is referred to as active learning.

Active learning studies how to label selectively instead of asking for all true
labels. It has been extensively studied in pool-based [13] and online settings [5].
In pool-based settings the decision concerning which instances to label is made
by ranking all historical instances (e.g. according to uncertainty) while in on-
line active learning each incoming instance is compared to a threshold (e.g. an
uncertainty threshold) and the system asks for the true label if the threshold is
exceeded. The main difference between online active learning and active learning
in data streams is in expectations around changes. In data streams the relation-
ship between the input data and the label may change (concept drift) and these
changes can happen anywhere in the instance space while online learning assumes
a stationary relationship between examples and their labels. As mentioned be-
fore, concept drifts in streams can happen anywhere in the data.

To cope with this issue previous works exploit randomization strategies to
span the whole instance space [24]. We propose a clustering based approach
ACLStream (Active Clustering Learning for Data Streams)to better deal with
possible drifts. More specifically, when a batch of instances arrives, we first par-
tition these instances using a clustering algorithm. Then we query examples for
labeling by combining geometrical information (supplied by the clustering) and
the maximum a posteriori probability of the model learnt from all the labelled
examples from previous batches of data. Once the query labels are obtained, the
data stream classifier is updated and it is ready to classify new incoming data.
The proposed strategy allows to selectively sample a subset of well distributed
instances in the data space. We demonstrate that the selected examples summa-
rize the stream sufficiently for learning an evolving classification model.

The remainder of this paper is organized as follows. Section 2 briefly explores
the state of the art in active learning for data streams and makes some connec-
tions with semi-supervised learning in data streams. The proposed methodology
is presented in Section 3. In Section 4 we present experimental results for a
number of real world datasets and we also supply a sensitivity analysis of the
essential parameters of the approach. Finally, Section 5 concludes the study.



2 Related work

Online active learning has been the subject of a number of studies, where the
data distribution is assumed to be static [2, 5, 9, 20]. The goal is to learn one
accurate model with minimum labeling effort. In contrast, in the evolving data
streams setting, which is the subject of our study, the goal is to continuously
update a model over time so that accuracy is maintained as the data distribution
is changing. The problem of label availability in evolving data streams has been
the subject of several recent studies [6,10,12,17,22,24] that fall into three main
groups.

The first group of works uses semi-supervised learning approaches to label
some of the unlabeled data automatically [12, 17, 22], which can only work un-
der the assumption that the class conditional distribution does not change (no
concept drift). Semi-supervised learning approaches are conceptually different
from the active learning approaches, that are the subject of our study, since the
former can only handle changes in the input data distribution, changes in the
relation between the input data and the target label cannot be spotted without
querying an external oracle as is done in active learning.

The second group of works process data in batches implicitly or explicitly
assuming that data is stationary within batches [6, 10, 14, 16]. Such approaches
require an external mechanism to handle concept drift. Lindstrom et al. [14] use
uncertainty sampling to label the most representative instances within each new
batch. They do not explicitly detect changes, instead they use a sliding window
approach, which discards the oldest instances. Masud et al. [16] use uncertainty
sampling within a batch to request labels. In addition, they use the unlabeled
instances with their predicted labels for training (semi-supervised learning ap-
proach). A few works integrate active learning and change detection [6, 10] in
the sense that they first detect change and only if change is detected do they ask
for representative true labels using offline active learning strategies designed for
stationary data. In this scenario drift handling and active learning can be consid-
ered as two mechanisms operating in parallel, but doing so independently. This
is the main difference between this scenario and the last one, which combines
the two mechanisms more closely together.

Finally, the third group of works use randomization to capture possible
changes in the class conditional distribution [4, 23, 24]. Cesa-Bianchi et al [4]
develop an online active learning method for a perceptron based on selective
sampling using a variable labeling threshold b/(b + |p|), where b is a parame-
ter and p is the prediction of the perceptron. The threshold itself is based on
certainty expectations, while the labels are queried at random. This mechanism
could allow adaptation to changes, although they did not explicitly consider con-
cept drift. Zhu et al. [23] build a classifier on a small portion of data within a
batch at random and use uncertainty sampling to label more instances within
this batch. A new classifier in each batch is needed to take into account concept
drift. Zliobaite et al. [24] operate in the pure online setting without batches,
where they combine stationary online active learning with randomization over
the instance space. Our study moves a step further from just employing random-



ization over the instances to capture a potential concept drift. We use stratified
sampling over the instance space instead, where the strata are determined using
a clustering mechanism.

The idea of pre-clustering has been considered for active learning in the
stationary setting [18]. The selection criterion gives priority to two types of
samples: samples close to the classification boundary and samples which are
cluster representatives. This way the prior data distribution can be taken into
account when making labeling decisions, which has been shown to work well
empirically and theoretically for certain data distributions. Employing clustering
is conceptually similar to our approach, however, the motivation behind doing
that in our approach is different. We mainly aim at tracking concept drift using
this mechanism.

3 Setting and Methods

In this section we describe our new algorithm ACLStream (Active Clustering
Learning for Data Streams). We suppose that our incoming data stream is di-
vided into batches. Each batch St is associated with the arrival time denoted
by the index t: S = {S1, S2, ..., Sn, ...}. This scenario is general enough to model
arbitrary real-world data streams. Note that even in the case of a fully incremen-
tal scenario, we can still build batches by employing a buffer based procedure to
collect examples. Given a data stream S and a budget b we want to learn a clas-
sifier cl with only b% of the instances in the stream. How to select the instances
to query is challenging for any active learning strategy. As we are working in a
batch incremental scenario, this means that if the value of b is 0.2 we can select
20% of the labels for each batch St. The proposed strategy is based on the clus-
tering of instances in a batch. To select a query point, first we choose a cluster
and then we select as query one of the instances belonging to that cluster. The
use of clusters helps the selection strategy to sample queries from different, but
still reasonably densely populated parts of the instance space. In this way we
hope to improve coverage for the different classes of the problem and to over-
come possible concept drift that can appear anywhere in the data space. Once
the clustering is produced we need to determine (i) which are the most useful
clusters to select, and (ii) given a cluster, which are the most useful instances
inside this specific cluster. For both cases we will define a ranking for all respec-
tive objects, clusters or instances. Thus we implement a two step procedure. As
a Macro Step, we need to define how to produce a suitable ranking of clusters
and then, as a Micro Step, we need to define how to rank the instances inside
each cluster in order to retrieve the most informative instances for labeling first.

The use of clustering, to select query instances, allows covering the whole
data space, albeit in a more focused manner than purely random sampling.
Points from all areas of the instance space may be sampled, which is a welcome
property in a data stream scenario in which concept drifts can appear anywhere.
Contrary to randomized strategies [24], that also try to cover the whole data
space, ACLStream is guided by the partitioning of the space induced by the



clustering algorithm. One of the advantages is higher robustness with regard to
outliers, where purely random sampling might waste valuable labeling resources.

3.1 Macro Step: Evaluating the Importance of a Cluster

After clustering of a batch is finished, we evaluate the quality of each partition
employing the classifier cl which was trained on all previously labeled data.
We classify all the instances of the batch St without taking into account the
clustering solution. After the classification step, we compute, separately for each
cluster, a distribution vector w.r.t. the class values. This means that each cluster
C∗ will be associated with a vector of length equals to the number of classes.
We indicate this vector as VC∗ . Each cell of the vector contains the number
of instances in the cluster, for which the classifier predicts that specific class
value. Intuitively, if the vector is balanced – all the class values are equally
probable – that cluster covers a more difficult part of the data space to classify in
comparison to a cluster with a very skewed distribution, in which there is a clear
predominant class value. Starting from this intuition, we introduce a function
to quantify the homogeneity of the predicted class distribution in a cluster. In
particular, the proposed measure returns values closer to 0 when class values are
equally probable while it returns 1 when the cluster is homogeneous w.r.t. the
predicted class values. The homogeneity function is defined as follows:

homogeneity(C∗) =

∑|VC∗ |
i=0

∑|VC∗ |
j=i+1 |VC∗ [i]− VC∗ [j]|

size(C∗) ∗ (|VC∗ | − 1)
(1)

where size(C∗) is the number of instances in the cluster C∗. The homogeneity
function is bounded between 0 and 1. The numerator evaluates the variation
of the prediction among the different class values to evaluate how far is from a
completely equiprobable situation. The numerator is then normalized by the ex-
treme case in which we assume that all the examples, in the cluster, are assigned
to the same class value.

Clusters are sorted in increasing value of their homogeneity, from perfectly
balanced to fully homogeneous.

3.2 Micro Step: Instance certainty inside a cluster

In order to quantify the importance or certainty of each instance, inside each
cluster, we combine two different factors. One is based on the centrality of the
instance w.r.t. its cluster centroid while the second one exploits the classifier cl.
To compute the centrality of an instance xi w.r.t. its cluster C∗ we simply use the
Euclidean distance between xi and the centroid of C∗ (centroid(C∗)). We refer
to this quantity using the notation d(xi, C∗) without explicitly indicating the use
of centroid(C∗) to simplify the notation. The second factor is computed by the
classifier. We use the maximum a posteriori probability of the classifier for the
particular instance xi. The maximum a posteriori probability is the maximum
among all the class probabilities predicted for xi. We indicate the maximum a



posteriori using the notation MAPcl(xi). Given a cluster C∗ and an instance xi

belonging to that cluster, the centralized certainty of the instance is supplied by
the following formula:

certainty(xi) = MAPcl(xi) ∗ d(xi, C∗) (2)

Intuitively we want to select instances i) for which the decision of the classifier
is less clear and ii) which are good representatives, or exemplars, for the area
covered by the cluster. To do this we combine the MAPcl(xi) that represents
point i) and d(xi, C∗) corresponding to point ii) by multiplication, and name the
resulting quantity the certainty of xi. Then, for each cluster, all instances are
sorted by increasing values of certainty. Therefore the most uncertain instances
will be selected first for labeling.

3.3 ACLStream strategy

Given a batch of instances St and a budget b, our solution uses clustering to select
a fraction (b) of instances from batch St that are deemed the most informative
for training a stream classifier. cl first classifies the incoming instances, then
we cluster the elements in St, obtaining a partition C = {C1, ..., Ck}. After
clustering, we apply our sampling strategy. First we perform the macro-step
that ranks the clusters in C according to the homogeneity function defined in
Equation 1. After that, for each cluster, we perform the micro-step which ranks
the instances according to their certainty (Equation 2). The returned result
is a set X of instances selected for labeling. The procedure is summarized in
Algorithm 1.

Our solution can also be adopted to work in a one-by-one classification sce-
nario. Using a buffer that collects batches of instances, the classifier continuously
classifies examples until the batch is full. At that point, we can interrupt the
classification process, select query points through the active learning strategy,
update the classifier and reset the buffer to restart collecting examples.

As a clustering algorithm we employ the standard K-Means algorithm [21].
Any kind of clustering algorithm could be used to perform this step. The use
of K-Means is motivated by its time complexity, which is linear w.r.t. the size
of the batch, and by the fact that it is generally used as universal baseline
in clustering. Future work will investigate the utility of alternative clusterers.
Once the partition is available, we rank the clusters w.r.t. their homogeneity
(see Formula 1). Clusters at the top of the ranking are the most balanced ones
in terms of their class distributions. Therefore they also represent areas of the
instance space over which the classifier is less confident. This ranking is stored
in a ranked list Lc. Then, for each cluster c of Lc we rank their instances. This
ranking is performed employing Formula 2. At this point we have quantified the
usefulness of both clusters and instances. To select instances for labelling, we
start from the top ranked cluster and we select and remove the first instance.
Then, iteratively, we select one instance from every other cluster in order to
explicitly cover all the different areas of the data space. If the budget exceeds



Algorithm 1 ACLStream(St, cl, b, k)

Require: St: batch of instances
Require: cl: classifier
Require: b: budget
Require: k: number of clusters
1: X = ∅
2: C = clustering(St,k)
3: Lc = rankClusters(C, cl) according to homogeneity (eq. 1)
4: for all c ∈ Lc do
5: rankExamples(c, cl) according to certainty (eq. 2)
6: end for
7: for i = 1→ b× size(St) do
8: X = X ∪ dequeue(Lc[i % k])
9: end for

10: return X

the number of clusters, we restart to sample instances again starting from the
top of the cluster ranking. If the budget is low and the number of instances to
sample is smaller than the number of clusters we only consider clusters in the
top of Lc.

3.4 General Classification Schema

Algorithm 2 summarizes the general classification schema. The Main loop simu-
lates the streaming process collecting batches of data. Once a batch is collected,
the data is classified and then used as input for the proposed active learning strat-
egy that returns the set of selected query points. The active learning strategy is
realized through Algorithm 1. To evaluate classifier performance we adopt the
prequential schema. The evaluation through the prequential setting involves two
steps: i) classify an instance, and ii) use the same instance to train the learner.
To implement this strategy, first we test all the instances in the batch with the
classifier cl. Second, we select examples for labeling using ACLStream. In this
way we respect the constraints imposed by our setting. Function askLabel(xj)
simulates the user in the labeling phase. At the end, the classifier cl is trained
over the set X of labeled data. The process continues until the end of the data
stream is reached.

4 Experiments

In this section we evaluate the performance and the quality of the proposed
ACLStream. We compare our algorithm with three other methods that are ex-
plicitly designed for active learning over data streams. We use the prequential
evaluation procedure: each time an instance arrives, we first test the algorithm
on it, and then we decide on whether pay the cost for labeling it and subsequently
use it as an input for updating the classifier.



Algorithm 2 Active Learning Process(S, b, k)

Require: S: stream of instances
Require: b: budget
Require: k: number of clusters
1: Init classifier cl
2: while hasMoreInstances(S) do
3: St = extractNextBatch(S)
4: for all xj ∈ St do
5: test(cl,xj)
6: end for
7: X = ACLStream(St,cl,b,k)
8: for all xj ∈ X do
9: yj = askLabel(xj)

10: train(cl,xj ,yj)
11: end for
12: end while

The first method is a baseline approach, also used in [24], that randomly
chooses examples for labeling. We call this method Random. The second method,
also proposed in [24], uses a randomized variable uncertainty strategy that com-
bines the randomization with maximum a posteriori probability and an adaptive
method to avoid consuming too much of the budget when a consecutive run of
easy instances is encountered. We call this approach Rand Unc. The last com-
petitor is an ensemble approach [23] that uses a maximum variance principle.
Given a set of classifiers, in a batch incremental scenario, the instances to label
are the ones over which the classifiers disagree the most. In the original work,
given a batch, the authors propose to first select the instances to label and then
classify the remain instances in the batch.

To have a fair comparison with the other approaches we wait until the end of
the batch before executing active learning. This way the model will be trained to
classify the instances of the next batch. We call this classifier MVC (Maximum
Variance Classifier). Using this set up i) we ensure that the budget constraints are
always respected during the stream process, ii) the comparison is fair w.r.t. our
approach and the other two competitors that suppose a full incremental scenario,
and iii) we respect prequential learning schema. For all methods a warm-up step
is introduced. In detail, the first 500 instances of each dataset are all labeled and
used to train the initial model used by the specific approach. Evaluation only
starts after this warm-up step. All the methods need a classification algorithm
as a base block to perform the classification and to produce the maximum a
posteriori probability. For this reason for our approach, for the Random and for
the Rand Unc strategies we use the classifier proposed in [7]. This classifier is
able to adapt itself to drift situations: when the accuracy of the classifier begins
to decrease a new classifier is built and trained with new incoming instances. For
MVC we use the C4.5 algorithm [19] as suggested in the original paper. Always
following the original paper we use a window size of 1 000 instances for MVC



as that size obtains best results, while for ACLStream we employ a window size
of 100 instances. The default number of clusters is 5. As our approach uses a
nondeterministic algorithm to perform the clustering, each result for ACLStream
is averaged over 30 runs. All our experiments are performed using the MOA data
stream software suite [3]. MOA is an open source software framework in Java
designed specifically for data stream mining.

4.1 Datasets

To evaluate all the algorithms we use five real world “datasets: Electricity, Cover
Type, Airlines, Poker, KDD99. Electricity data [8] is a popular benchmark in
evaluating streaming classifiers. The task is to predict the rise or fall of electricity
prices (demand) in New South Wales (Australia), given recent consumption and
prices in the same and neighboring regions. Cover Type data [1] is also often
used as a benchmark for evaluating stream classifiers. The task is to predict
forest cover types or types of vegetation from cartographic variables. Inspired
by [11] we constructed an Airlines dataset using the raw data from US flight
control. The task is to predict whether a given flight will be delayed, given the
information of the scheduled departure. The Poker dataset represents all the
possible combination of cards in one hand with the corresponding score as the
class value. This results in a big dataset with more than 800k instances. The
last dataset, KDD99, is commonly used as a benchmark anomaly detection task
but recently it has also been employed as a dataset for testing data stream
algorithms [17]. One of the big problems with this dataset is the big amount of
redundancy among instances. To solve this problem we use the cleaned version
named NSL-KDD6. To build the final dataset we join both training and test data.
A summary of the datasets’ characteristics is reported in Table 1. We observe
that this collection of datasets contains both binary and multi-class classification
problems, datasets with different numbers of instances (varying between 42k to
829k) and different numbers of features (from 7 to 54).

For analysis purposes, we also introduce one more dataset, named Cover
Type Sorted, in which the instances of the Cover Type dataset are reordered
w.r.t. the attribute elevation. Due to the nature of the underlying problem,
sorting the instances by the elevation attribute induces a natural gradual drift
on the class distribution, because at higher elevation some types of vegetation
disappear while other types of vegetation appear gracefully. We think that this
final set of six datasets is a good benchmark for evaluating the performance of
our approach, ACLStream, w.r.t. state of the art methods.

4.2 Analysis of Classification Accuracies

The final accuracy results are reported in Figure 1. In this experiment we eval-
uate the different methods, over the different datasets, varying the budget per-
centage. We start with a budget percentage of 0.03 and go up to a percentage of

6 http://nsl.cs.unb.ca/NSL-KDD/



Dataset n. of Instances n. of Features n. of Classes

Airlines 539 383 7 2

Electricity 45 312 8 2

Cover Type 581 012 54 7

Poker 829 201 10 10

KDD99 148 517 41 2

Table 1. Dataset characteristics

0.3. Obviously, to evaluate the results we need to take into account both budget
size and accuracy. We can observe that, except for KDD99 dataset, ACLStream
outperforms the other methods for low budgets, less than 0.15, while for bigger
budgets the performances are either better as well, or at least comparable. For
the case of KDD99 the performances of Random, Rand Unc and ACLStream
are very close to each other and the difference is smaller than 1.5 percentage
points of accuracy. Another useful feature of our new method is its stability.
As we can see from the graphs, ACLStream always remains stable varying the
budget percentage while this is not the case for all the other methods. This be-
haviour is clearly present for the Cover Type dataset. In this case the Rand Unc
strategy is very unstable and small changes of the budget (from 0.15 to 0.25)
induce a big change (ten points of accuracy) in the final performance. Also the
Random strategy is much more unstable than our proposed method. Another
general conclusion we can draw regards MVC, which always obtains low accu-
racy performance when compared to all the other methods. To wrap up all the
findings from this experiment, we can claim that ACLStream works well for very
low budget percentages, which is a very important and desirable feature for any
active learning strategy. This is particularly important in the data stream do-
main, in which data arrives continuously and time-consuming operations, such
as data labeling, need to be minimized. On the other hand, due to its stability,
ACLStream small budget results are very similar to ones obtained with higher
budget. This observation implies that the active learning strategy based on our
clustering approach is especially effective for small budgets.

4.3 Influence of the Number of Clusters

We evaluate how the number of clusters influences the performance of ACLStream.
For this analysis we fix the batch size to 100 as in the general experiment, and we
vary the number of clusters from 5 to 25 with a step size of 5. We report results
in Figure 2. As we can note, the number of clusters does not affect the general
performance of the algorithm, so it is also very stable w.r.t. the setting of this
parameter. We can observe that for Airlines, Electricity, KDD99 and Cover Type
Sorted datasets the maximum accuracy fluctuation over the different datasets
is smaller than 0.8 points of accuracy. For the Cover Type dataset we reach the
maximum accuracy gain (1.4 points of accuracy) between k=5 and k=25 when
the budget is equal to 0.3. The maximum difference in accuracy (2.5 points of
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Fig. 1. Accuracy on a) Airlines b) Cover Type c) Poker d) Electricity e) Cover Type
Sorted and f) KDD99

accuracy), among all the experiments, is measured for the Poker dataset for a
budget of 0.15. For this dataset, ACLStream with a number of clusters equal to
5 always obtains the best accuracy. Still, even in this case, the performances of
different numbers of clusters are very close to each other.

The obtained stability w.r.t. the number of clusters underlines that the com-
bination of our macro and micro steps is effective for dealing with the complexity
of data streams. Specifically, starting to analyze clusters with low homogeneity,
which are clusters covering areas that are ambiguous according to prediction ev-
idence, forces the method to sample examples where labeling information seems



most useful. This is particularly important when the budget size is actually
smaller than the total number of clusters.
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Fig. 2. Accuracy of ACLStream varying the number of clusters from 5 to 25 on a)
Airlines b) Cover Type c) Poker d) Electricity e) Cover Type Sorted and f) KDD99

4.4 Influence of the Batch Size

The last set of experiments focuses on the influence of the second parameter:
the size of the batches. In particular, we analyze how the size of a batch impacts
the final accuracy of ACLStream. For this purpose, we run experiments varying



the size of the batches from 100 to 500 with a step size of 100. We average each
result over 30 runs and we set the number of clusters equal to 5. The results are
reported in Figure 3. We can observe two distinct behaviors. There is one group
of three datasets – Cover Type, Poker and Electricity – for which the batch
size influences the final accuracy, and another group comprising the remaining
three datasets – Airlines, Cover Type Sorted and KDD99 ) – for which this
parameter does not seem to affect the final performance. For the latter group
of datasets the fluctuation in accuracy is less than 0.5 points. For the former
group of datasets, the ones influenced by the batch size, we can note that in
general smaller batches outperform bigger ones. Using small batches forces the
learner to adapt faster to possible changes, and to sample instances in a more
regular way. This is particularly useful where concept drift happens quickly and
frequently. This is the case for the Electricty dataset, where multiple levels of
periodicity are present, over 24 hours, over 7 days, and over 4 seasons. Drift can
be visually presented by plotting class conditional distributions over time. On the
other hand, this is not the case for the Cover Type Sorted dataset, where batch
size does not produce significant accuracy changes, as very gradual and smooth
concept drift as induced by sorting the instances by the elevation attribute. This
gradual drift phenomena can be managed well by all batch sizes evaluated here.

To summarize, for ACLStream we can state that small values for batch size
are preferable over large ones. Using a small batch size forces the system to sam-
ple labels at more regular intervals. Consequently, the learner adapts better and
faster in case of fast concept drift, without negatively impacting the performance
on datasets where concept drift may be more gradual or not present at all.

5 Conclusions

Building classification models on data streams considering only a limited amount
of labeled data is starting to be a common task due to time and cost con-
straints. In this paper we presented ACLStream, a novel algorithm to perform
active learning in a data stream scenario. Our approach exploits a clustering
based partitioning of the data space to focus sampling on the potentially most
useful examples to label. Clusters are ranked by homogeneity of their predicted
class distributions. Instances in each cluster are ranked according to two factors:
i) maximum a posteriori classification probability, and ii) geometrical position
inside the cluster. Certainty is defined to be the product of these two factors.
Instances with low certainty inside a given cluster are preferred, as they rep-
resent central points over which the classifier is more uncertain. We assessed
the performance of ACLStream over real world datasets and we showed that
it outperforms state-of-the-art active learning strategies for data streams. We
also empirically studied how our proposal is influenced by the setting of its pa-
rameters. As future work we would like to investigate in more detail the use of
clustering for active learning in data streams considering alternative clustering
algorithms as well as alternative ranking heuristics.
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Fig. 3. Accuracy Results for ACLStream on a) Airlines b) Cover Type c) Poker d)
Electricity e) Cover Type Sorted and f) KDD99 varying the batch size from 100 to 500
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