159 research outputs found

    Diversity of Listeria monocytogenes strains of clinical and food chain origins in Belgium between 1985 and 2014

    Get PDF
    Listeriosis is a rare but severe disease, mainly caused by Listeria monocytogenes. This study shows the results of the laboratory-based surveillance of Listeriosis in Belgium over the period 1985-2014. Besides the incidence and some demographic data we present also more detailed microbiological and molecular characteristics of human strains isolated since 2000. The strains from the latter period were compared to food and animal strains from the same period. Our study shows that different food matrices were commonly contaminated with L. monocytogenes presenting the same PFGE profile as in patient's isolates. Since 1985, we observed a significant decrease in incidence of the Materno-Neonatal cases (from 0.15 to 0.04 cases /100,000 inhabitants-year), which is probably to be attributed to active prevention campaigns targeting pregnant women. Despite the strengthening of different control measures by the food industry, the incidence of non-Materno-Neonatal listeriosis increased in Belgium (from 0.3 to 0.7 cases /100,000 inhabitants-year), probably due to the rise of highly susceptible patients in an aging population. This significant increase found in non-Materno-Neonatal cases (slope coefficient 7.42%/year, P< 0.0001) can be attributed to significant increase in incidence of isolates belonging to serovars 1/2a (n = 393, slope coefficient 6.62%/year, P< 0.0001). Although resistance to antimicrobials is rare among L. monocytogenes isolates, a trend to increasing MIC values is evident with chloramphenicol, amoxicillin, tetracycline and ciprofloxacin. We show that fluoroquinolone resistance is not linked to chromosomal mutations, but caused by a variety of efflux pumps. Our study also shows that huge majority of known underlying pathologies (426 out of 785 cases) were cancers (185/426, 43.1%) and haematological malignancies (75/185, 40.5%). Moreover the risk population is susceptible to low levels of contamination in food stressing the need of prevention campaigns specifically targeting these persons

    The use of genomic signature distance between bacteriophages and their hosts displays evolutionary relationships and phage growth cycle determination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteriophage classification is mainly based on morphological traits and genome characteristics combined with host information and in some cases on phage growth lifestyle. A lack of molecular tools can impede more precise studies on phylogenetic relationships or even a taxonomic classification. The use of methods to analyze genome sequences without the requirement for homology has allowed advances in classification.</p> <p>Results</p> <p>Here, we proposed to use genome sequence signature to characterize bacteriophages and to compare them to their host genome signature in order to obtain host-phage relationships and information on their lifestyle. We analyze the host-phage relationships in the four most representative groups of Caudoviridae, the dsDNA group of phages. We demonstrate that the use of phage genomic signature and its comparison with that of the host allows a grouping of phages and is also able to predict the host-phage relationships (lytic <it>vs</it>. temperate).</p> <p>Conclusions</p> <p>We can thus condense, in relatively simple figures, this phage information dispersed over many publications.</p

    The T7-Related Pseudomonas putida Phage ϕ15 Displays Virion-Associated Biofilm Degradation Properties

    Get PDF
    Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage ϕ15, a ‘T7-like virus’ with a virion-associated exopolysaccharide (EPS) depolymerase. Phage ϕ15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of ϕ15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (104 and 106 pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and ϕ15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy

    Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies

    Get PDF
    Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1s dsDNA genome consists of 163,095bp and encodes 271 proteins, exhibiting low DNA (10kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). RL contributed to the genome sequencing analysis, supported by the KU Leuven GOA Grant ‘Phage Biosystems’. JP acknowledges the project R-3986 of the Herculesstichting.info:eu-repo/semantics/publishedVersio

    Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials

    Get PDF
    We describe the small-scale, laboratory-based, production and quality control of a cocktail, consisting of exclusively lytic bacteriophages, designed for the treatment of Pseudomonas aeruginosa and Staphylococcus aureus infections in burn wound patients. Based on succesive selection rounds three bacteriophages were retained from an initial pool of 82 P. aeruginosa and 8 S. aureus bacteriophages, specific for prevalent P. aeruginosa and S. aureus strains in the Burn Centre of the Queen Astrid Military Hospital in Brussels, Belgium. This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin. Quality control included Stability (shelf life), determination of pyrogenicity, sterility and cytotoxicity, confirmation of the absence of temperate bacteriophages and transmission electron microscopy-based confirmation of the presence of the expected virion morphologic particles as well as of their specific interaction with the target bacteria. Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, φKMV and phage G1. The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee

    A global genomic analysis of Salmonella Concord reveals lineages with high antimicrobial resistance in Ethiopia.

    Get PDF
    Antimicrobial resistant Salmonella enterica serovar Concord (S. Concord) is known to cause severe gastrointestinal and bloodstream infections in patients from Ethiopia and Ethiopian adoptees, and occasional records exist of S. Concord linked to other countries. The evolution and geographical distribution of S. Concord remained unclear. Here, we provide a genomic overview of the population structure and antimicrobial resistance (AMR) of S. Concord by analysing genomes from 284 historical and contemporary isolates obtained between 1944 and 2022 across the globe. We demonstrate that S. Concord is a polyphyletic serovar distributed among three Salmonella super-lineages. Super-lineage A is composed of eight S. Concord lineages, of which four are associated with multiple countries and low levels of AMR. Other lineages are restricted to Ethiopia and horizontally acquired resistance to most antimicrobials used for treating invasive Salmonella infections in low- and middle-income countries. By reconstructing complete genomes for 10 representative strains, we demonstrate the presence of AMR markers integrated in structurally diverse IncHI2 and IncA/C2 plasmids, and/or the chromosome. Molecular surveillance of pathogens such as S. Concord supports the understanding of AMR and the multi-sector response to the global AMR threat. This study provides a comprehensive baseline data set essential for future molecular surveillance

    Qualitative analysis of spinal intramedullary lesions using PET/CT

    No full text
    corecore