3,252 research outputs found

    Classification of Quantum Hall Universality Classes by $\ W_{1+\infty}\ $ symmetry

    Full text link
    We show how two-dimensional incompressible quantum fluids and their excitations can be viewed as  W1+ \ W_{1+\infty}\ edge conformal field theories, thereby providing an algebraic characterization of incompressibility. The Kac-Radul representation theory of the  W1+ \ W_{1+\infty}\ algebra leads then to a purely algebraic complete classification of hierarchical quantum Hall states, which encompasses all measured fractions. Spin-polarized electrons in single-layer devices can only have Abelian anyon excitations.Comment: 11 pages, RevTeX 3.0, MPI-Ph/93-75 DFTT 65/9

    A Unified Conformal Field Theory Description of Paired Quantum Hall States

    Full text link
    The wave functions of the Haldane-Rezayi paired Hall state have been previously described by a non-unitary conformal field theory with central charge c=-2. Moreover, a relation with the c=1 unitary Weyl fermion has been suggested. We construct the complete unitary theory and show that it consistently describes the edge excitations of the Haldane-Rezayi state. Actually, we show that the unitary (c=1) and non-unitary (c=-2) theories are related by a local map between the two sets of fields and by a suitable change of conjugation. The unitary theory of the Haldane-Rezayi state is found to be the same as that of the 331 paired Hall state. Furthermore, the analysis of modular invariant partition functions shows that no alternative unitary descriptions are possible for the Haldane-Rezayi state within the class of rational conformal field theories with abelian current algebra. Finally, the known c=3/2 conformal theory of the Pfaffian state is also obtained from the 331 theory by a reduction of degrees of freedom which can be physically realized in the double-layer Hall systems.Comment: Latex, 42 pages, 2 figures, 3 tables; minor corrections to text and reference

    Coulomb Blockade in Hierarchical Quantum Hall Droplets

    Full text link
    The degeneracy of energy levels in a quantum dot of Hall fluid, leading to conductance peaks, can be readily derived from the partition functions of conformal field theory. Their complete expressions can be found for Hall states with both Abelian and non-Abelian statistics, upon adapting known results for the annulus geometry. We analyze the Abelian states with hierarchical filling fractions, \nu=m/(mp \pm 1), and find a non trivial pattern of conductance peaks. In particular, each one of them occurs with a characteristic multiplicity, that is due to the extended symmetry of the m-folded edge. Experimental tests of the multiplicity can shed more light on the dynamics of this composite edge.Comment: 8 pages; v2: published version; effects of level multiplicities not well understood, see arXiv:0909.3588 for the correct analysi

    A universal conformal field theory approach to the chiral persistent currents in the mesoscopic fractional quantum Hall states

    Full text link
    We propose a general and compact scheme for the computation of the periods and amplitudes of the chiral persistent currents, magnetizations and magnetic susceptibilities in mesoscopic fractional quantum Hall disk samples threaded by Aharonov--Bohm magnetic field. This universal approach uses the effective conformal field theory for the edge states in the quantum Hall effect to derive explicit formulas for the corresponding partition functions in presence of flux. We point out the crucial role of a special invariance condition for the partition function, following from the Bloch-Byers-Yang theorem, which represents the Laughlin spectral flow. As an example we apply this procedure to the Z_k parafermion Hall states and show that they have universal non-Fermi liquid behavior without anomalous oscillations. For the analysis of the high-temperature asymptotics of the persistent currents in the parafermion states we derive the modular S-matrices constructed from the S matrices for the u(1) sector and that for the neutral parafermion sector which is realized as a diagonal affine coset.Comment: 45 pages, LaTeX2e, 4 EPS figures, 1 table, for related color figures see http://theo.inrne.bas.bg/~lgeorg/PF_k.htm

    Magnetic particles at fluid-fluid interfaces : microrheology, interaction and wetting

    Get PDF

    A note on the topological order of noncommutative Hall fluids

    Full text link
    We evaluate the ground state degeneracy of noncommutative Chern-Simons models on the two-torus, a quantity that is interpreted as the "topological order" of associated phases of Hall fluids. We define the noncommutative theory via T-duality from an ordinary Chern-Simons model with non-abelian 't Hooft magnetic fluxes. Motivated by this T-duality, we propose a discrete family of noncommutative, non-abelian fluid models, arising as a natural generalization of the standard noncommutative Chern-Simons effective models. We compute the topological order for these universality classes, and comment on their possible microscopic interpretation.Comment: 14 page

    Spontaneous Breaking of Conformal Invariance and Trace Anomaly Matching

    Full text link
    We argue that when conformal symmetry is spontaneously broken the trace anomalies in the broken and unbroken phases are matched. This puts strong constraints on the various couplings of the dilaton. Using the uniqueness of the effective action for the Goldstone supermultiplet for broken N=1{\cal N}=1 superconformal symmetry the dilaton effective action is calculated.Comment: 29 pages, 2 figure

    Chiral persistent currents and magnetic susceptibilities in the parafermion quantum Hall states in the second Landau level with Aharonov-Bohm flux

    Full text link
    Using the effective conformal field theory for the quantum Hall edge states we propose a compact and convenient scheme for the computation of the periods, amplitudes and temperature behavior of the chiral persistent currents and the magnetic susceptibilities in the mesoscopic disk version of the Z_k parafermion quantum Hall states in the second Landau level. Our numerical calculations show that the persistent currents are periodic in the Aharonov-Bohm flux with period exactly one flux quantum and have a diamagnetic nature. In the high-temperature regime their amplitudes decay exponentially with increasing the temperature and the corresponding exponents are universal characteristics of non-Fermi liquids. Our theoretical results for these exponents are in perfect agreement with those extracted from the numerical data and demonstrate that there is in general a non-trivial contribution coming from the neutral sector. We emphasize the crucial role of the non-holomorphic factors, first proposed by Cappelli and Zemba in the context of the conformal field theory partition functions for the quantum Hall states, which ensure the invariance of the annulus partition function under the Laughlin spectral flow.Comment: 14 pages, RevTeX4, 7 figures (eps

    Composite Fermion Wavefunctions Derived by Conformal Field Theory

    Full text link
    The Jain theory of hierarchical Hall states is reconsidered in the light of recent analyses that have found exact relations between projected Jain wavefunctions and conformal field theory correlators. We show that the underlying conformal theory is precisely given by the W-infinity minimal models introduced earlier. This theory involves a reduction of the multicomponent Abelian theory that is similar to the projection to the lowest Landau level in the Jain approach. The projection yields quasihole excitations obeying non-Abelian fractional statistics. The analysis closely parallels the bosonic conformal theory description of the Pfaffian and Read-Rezayi states.Comment: 4 pages, 1 figur

    Thermal broadening of the Coulomb blockade peaks in quantum Hall interferometers

    Full text link
    We demonstrate that the differential magnetic susceptibility of a fractional quantum Hall disk, representing a Coulomb island in a Fabry--Perot interferometer, is exactly proportional to the island's conductance and its paramagnetic peaks are the equilibrium counterparts of the Coulomb blockade conductance peaks. Using as a thermodynamic potential the partition functions of the edge states' effective conformal field theory we find the positions of the Coulomb blockade peaks, when the area of the island is varied, the modulations of the distance between them as well as the thermal decay and broadening of the peaks when temperature is increased. The finite-temperature estimates of the peak's heights and widths could give important information about the experimental observability of the Coulomb blockade. In addition, the predicted peak asymmetry and displacement at finite temperature due to neutral multiplicities could serve to distinguish different fractional quantum Hall states with similar zero-temperature Coulomb blockade patterns.Comment: 6 pages, 6 figures; published versio
    corecore