6,978 research outputs found
Some measurements of the dynamic and static stability of two blunt-nosed, low-fineness- ratio bodies of revolution in free flight at mequal4
Dynamic and static stability of two blunt nosed low fineness ratio bodies of revolution in free flight - ballistic
FREE-FLIGHT MEASUREMENTS OF STATIC AND DYNAMIC STABILITY OF MODELS OF THE PROJECT MERCURY RE-ENTRY CAPSULE AT MACH NUMBERS 3 AND 9.5
Static & dynamic stability of mercury reentry capsule scale models at mach 3 & 9.
Sea surface and remotely sensed temperatures off Cape Mendocino, California
During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field
Superconductivity and Cobalt Oxidation State in Metastable Na(x)CoO(2-delta)*yH2O (x ~ 1/3; y ~ 4x)
We report the synthesis and superconducting properties of a metastable form
of the known superconductor NaxCoO2*yH2O (x ~ 1/3, y ~ 4x). Instead of using
the conventional bromine-acetonitrile mixture for sodium deintercalation, we
use an aqueous bromine solution. Using this method, we oxidize the sample to a
point that the sodium cobaltate becomes unstable, leading to formation of other
products if not controlled. This compound has the same structure as the
reported superconductor, yet it exhibits a systematic variation of the
superconducting transition temperature (Tc) as a function of time. Immediately
after synthesis, this compound is not a superconductor, even though it contains
appropriate amounts of sodium and water. The samples become superconducting
with low Tc values after ~ 90 h. Tc continually increases until it reaches a
maximum value (4.5 K) after about 260 h. Then Tc drops drastically, becoming
non-superconducting approximately 100 h later. Corresponding time-dependent
neutron powder diffraction data shows that the changes in superconductivity
exhibited by the metastable cobaltate correspond to slow formation of oxygen
vacancies in the CoO2 layers. In effect, the formation of these defects
continually reduces the cobalt oxidation state causing the sample to evolve
through its superconducting life cycle. Thus, the dome-shaped superconducting
phase diagram is mapped as a function of cobalt oxidation state using a single
sample. The width of this dome based on the formal oxidation state of cobalt is
very narrow - approximately 0.1 valence units wide. Interestingly, the maximum
Tc in NaxCoO2*yH2O occurs when the cobalt oxidation state is near 3.5. Thus, we
speculate that the maximum Tc occurs near the charge ordered insulating state
that correlates with the average cobalt oxidation state of 3.5.Comment: 22 pages, 9 figures, 1 tabl
Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies
Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation
Site-selection model for optimal transplantation of eelgrass Zostera marina in the northeastern US
A site-selection model for eelgrass Zostera marina L. ecosystem restoration was developed in the northeastern US to select optimal areas for transplanting eelgrass. The site-selection model synthesizes available historic and literature-based information, reference data, and simple field measurements to identify and prioritize locations for large-scale eelgrass transplantation. Model development was based on the physical and biological characteristics associated with the most successful transplant sites in a mitigation project for the New Hampshire Port Authority. The site-selection process is divided into 3 phases: (1) the first phase uses available environmental information to formulate a preliminary transplant suitability index (PTSI) for pre-screening and eliminating unsuitable sites; (2) the second phase involves field measurements of light availability and bioturbation as well as survival and growth of test transplants at priority sites identified by the PTSI; (3) a transplant suitability index (TSI) score is calculated for each site based on the PTSI and the results of field assessments. The TSI is a multiplicative index that eliminates sites which receive ratings of zero and gives high scores to those sites with the greatest potential for successful transplantation. We applied the TSI post hoc to the New Hampshire Port Project¹s eelgrass transplant sites, and subsequently the site-selection model was used in an eelgrass restoration project in New Bedford Harbor, Massachusetts. After 2 yr of transplanting, the New Bedford Harbor effort has resulted in success at 62% of the sites planted using the site-selection model
On the speed of fluctuations around thermodynamic equilibrium
We study the speed of fluctuation of a quantum system around its
thermodynamic equilibrium state, and show that the speed will be extremely
small for almost all times in typical thermodynamic cases. The setting
considered here is that of a quantum system couples to a bath, both jointly
described as a closed system. This setting, is the same as the one considered
in [N. Linden et al., Phys. Rev. E 79:061103 (2009)] and the ``thermodynamic
equilibrium state'' refers to a situation that includes the usual thermodynamic
equilibrium case, as well as far more general situations
Feasibility, acceptability and efficacy of a web-based computer-tailored physical activity intervention for pregnant women - the Fit4Two randomised controlled trial
Background: Physical activity (PA) during pregnancy is associated with a variety of health benefits including a reduced risk of pregnancy related conditions such as pre-eclampsia and pregnancy-induced hypertension and leads to greater control over gestational weight gain. Despite these associated health benefits, very few pregnant women are sufficiently active. In an attempt to increase health outcomes, it is important to explore innovative ways to increase PA among pregnant women. Therefore, the aim of this study was to assess the feasibility, acceptability and efficacy of a four week web-based computer-tailored PA intervention among pregnant women. Methods: Seventy-seven participants were randomised into either: (1) an intervention group that received tailored PA advice and access to a resource library of articles relating to PA during pregnancy; or (2) a standard information group that only received access to the resources library. Objective moderate-to-vigorous physical activity (MVPA) was assessed at baseline and immediately post-intervention. Recruitment, attrition, intervention adherence, and website engagement were assessed. Questions on usability and satisfaction were administered post-intervention. Results: Feasibility was demonstrated through acceptable recruitment (8.5 participants recruited and randomised/ month), and attrition (25%). Acceptability among intervention group participants was positive with high intervention adherence (96% of 4 modules completed). High website engagement (participants logged in 1.6 times/week although only required to log in once per week), usability (75/100), and satisfaction outcomes were reported in both groups. However, participants in the intervention group viewed significantly more pages on the website (p < 0.05), reported that the website felt more personally relevant (p < 0.05), and significantly increased their MVPA from baseline to postintervention (mean difference = 35.87 min), compared to the control group (mean difference = 9.83 min) (p < 0.05), suggesting efficacy. Conclusions: The delivery of a computer-tailored web-based intervention designed to increase PA in pregnant women is feasible, well accepted and associated with increases in short-term MVPA. Findings suggest the use of computer-tailored information leads to greater website engagement, satisfaction and greater PA levels among pregnant women compared to a generic information only website. Trial registration: The trial was ‘retrospectively registered’ with the Australian New Zealand Clinical Trials RegistryMelanie Hayman, Peter Reaburn, Matthew Browne, Corneel Vandelanotte, Stephanie Alley and Camille E. Shor
UV excess measures of accretion onto young very low-mass stars and brown dwarfs
Low-resolution spectra from 3000-9000 AA of young low-mass stars and brown
dwarfs were obtained with LRIS on Keck I. The excess UV and optical emission
arising in the Balmer and Paschen continua yields mass accretion rates ranging
from 2e-12 to 1e-8 Mo/yr. These results are compared with {\it HST}/STIS
spectra of roughly solar-mass accretors with accretion rates that range from
2e-10 to 5e-8 Mo/yr. The weak photospheric emission from M-dwarfs at <4000 A
leads to a higher contrast between the accretion and photospheric emission
relative to higher-mass counterparts. The mass accretion rates measured here
are systematically 4-7 times larger than those from H-alpha emission line
profiles, with a difference that is consistent with but unlikely to be
explained by the uncertainty in both methods. The accretion luminosity
correlates well with many line luminosities, including high Balmer and many He
I lines. Correlations of the accretion rate with H-alpha 10% width and line
fluxes show a large amount of scatter. Our results and previous accretion rate
measurements suggest that accretion rate is proportional to M^(1.87+/-0.26) for
accretors in the Taurus Molecular Cloud.Comment: 13 pages text, 15 tables, 14 figures. Accepted by Ap
The chain rule implies Tsirelson's bound: an approach from generalized mutual information
In order to analyze an information theoretical derivation of Tsirelson's
bound based on information causality, we introduce a generalized mutual
information (GMI), defined as the optimal coding rate of a channel with
classical inputs and general probabilistic outputs. In the case where the
outputs are quantum, the GMI coincides with the quantum mutual information. In
general, the GMI does not necessarily satisfy the chain rule. We prove that
Tsirelson's bound can be derived by imposing the chain rule on the GMI. We
formulate a principle, which we call the no-supersignalling condition, which
states that the assistance of nonlocal correlations does not increase the
capability of classical communication. We prove that this condition is
equivalent to the no-signalling condition. As a result, we show that
Tsirelson's bound is implied by the nonpositivity of the quantitative
difference between information causality and no-supersignalling.Comment: 23 pages, 8 figures, Added Section 2 and Appendix B, result
unchanged, Added reference
- …