33 research outputs found

    Synthesis, structures and photoluminescence properties of silver complexes of cyclic (alkyl)(amino)carbenes

    Get PDF
    Silver complexes of cyclic (alkyl)(amino)carbenes (CAACs), (RL)nAgX (n = 1, X = Cl, Br, I; n = 2, X = OTf; R = Me2, Et2, or adamantyl) are accessible in high yields by reacting free carbenes with silver salts. The smaller carbene ligand Me2L leads to the formation of a mixture of neutral (Me2L)AgCl and cationic [(Me2L)2Ag]+ products. The transmetallation of (AdL)AgCl with copper and gold halides gives the corresponding copper and gold compounds (AdL)MCl (M = Cu and Au) in a clean and quantitative reaction. Whereas (Me2L)AgCl is monomeric in the solid state, (Et2L)AgCl crystallizes as a Cl-bridged dimer. None of the compounds show metal-metal interactions. The complexes show blue photoluminescence, which consists of a fluorescence component with a lifetime of several nanoseconds, as well as a long-lived emission in the microsecond regime

    Recent advances in organic synthesis using light-mediated n-heterocyclic carbene catalysis

    Full text link
    The combination of photocatalysis with other ground state catalytic systems have attracted much attention recently due to the enormous synthetic potential offered by a dual activation mode. The use of N-heterocyclic carbene (NHC) as organocatalysts emerged as an important synthetic tool. Its ability to harness umpolung reactivity by the formation of the Breslow intermediate has been employed in the synthesis of thousands of biologically important compounds. However, the available coupling partners are relatively restricted, and its combination with other catalytic systems might improve its synthetic versatility. Thus, merging photoredox and N-heterocyclic carbene (NHC) catalysis has emerged recently as a powerful strategy to develop new transformations and give access to a whole new branch of synthetic possibilities. This review compiles the NHC catalyzed methods mediated by light, either in the presence or absence of an external photocatalyst, that have been described so far, and aims to give an accurate overview of the potential of this activation modeL.M. acknowledges the Autonomous Community of Madrid (CAM) for the financial support (PEJD-2019-PRE/AMB-16640 and SI1/PJI/ 2019-00237) and for an “Atracción de Talento Investigador” contract (2017-T2/AMB-5037

    Tuning the Surface Functionality of Fe3O4 for Sensitive and Selective Detection of Heavy Metal Ions

    No full text
    The functionalization of materials for ultrasensitive detection of heavy metal ions (HMIs) in the environment is crucial. Herewith, we have functionalized inexpensive and environmentally friendly Fe3O4 nanoparticles with D-valine (Fe3O4–D–Val) by a simple co-precipitation synthetic approach characterized by XRD, FE-SEM, and FTIR spectroscopy. The Fe3O4–D–Val sensor was used for the ultrasensitive detection of Cd+2, Pb+2, and Cu+2 in water samples. This sensor shows a very low detection limit of 11.29, 4.59, and 20.07 nM for Cd+2, Pb+2, and Cu+2, respectively. The detection limits are much lower than the values suggested by the world health Organization. The real water samples were also analyzed using the developed sensor
    corecore