132 research outputs found
CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes
CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene
Effects of chlorinated organics from wastewater treatment on algal growth
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47982/1/128_2005_Article_BF01770039.pd
The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues
Pathogens and antibiotics enter the aquatic environment via sewage effluents and may pose a health risk to wild life and humans. The aim of this study was to determine the levels of faecal bacteria, and selected antibiotic residues in raw wastewater and treated sewage effluents from three different sewage treatment plants in the Western Cape, South Africa. Sewage treatment plant 1 and 2 use older technologies, while sewage treatment plant 3 has been upgraded and membrane technologies were incorporated in the treatment processes. Coliforms and Escherichia coli (E. coli) were used as bioindicators for faecal bacteria. A chromogenic test was used to screen for coliforms and E. coli. Fluoroquinolones and sulfamethoxazole are commonly used antibiotics and were selected to monitor the efficiency of sewage treatment processes for antibiotic removal. Enzyme Linked Immunosorbent Assays (ELISAs) were used to quantitate antibiotic residues in raw and treated sewage. Raw intake water at all treatment plants contained total coliforms and E. coli. High removal of E. coli by treatment processes was evident for treatment plant 2 and 3 only. Fluoroquinolones and sulfamethoxazole were detected in raw wastewater from all sewage treatment plants. Treatment processes at plant 1 did not reduce the fluoroquinolone concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced the fluoroquinolone concentration by 21% and 31%, respectively. Treatment processes at plant 1 did not reduce the sulfamethoxazole concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced sulfamethoxazole by 34% and 56%, respectively. This study showed that bacteria and antibiotic residues are still discharged into the environment. Further research needs to be undertaken to improve sewage treatment technologies, thereby producing a better quality treated sewage effluent
Recommended from our members
Integrative analysis of multimodal mass spectrometry data in MZmine 3
3 Pág.We thank Christopher Jensen and Gauthier Boaglio for their contributions to the MZmine codebase. We thank Jianbo Zhang and Zachary Russ for their donations to MZmine development. The MZmine 3 logo was designed by the Bioinformatics & Research Computing group at the Whitehead Institute for Biomedical Research. T.P. is supported by Czech Science Foundation (GA CR) grant 21-11563M and by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 891397. Support for P.C.D. was from US NIH U19 AG063744, P50HD106463, 1U24DK133658 and BBSRC-NSF award 2152526. T.S. acknowledges funding by Deutsche Forschungsgemeinschaft (441958208). M. Wang acknowledges the US Department of Energy Joint Genome Institute ( https://ror.org/04xm1d337 , a DOE Office of Science User Facility) and is supported by the Office of Science of the US Department of Energy operated under subcontract No. 7601660. E.R. and H.H. thank Wen Jiang (HILICON AB) for providing the iHILIC Fusion(+) column for HILIC measurements. M.F., K.D. and S.B. are supported by Deutsche Forschungsgemeinschaft (BO 1910/20). L.-F.N. is supported by the Swiss National Science Foundation (project 189921). D.P. was supported through the Deutsche Forschungsgemeinschaft (German Research Foundation) through the CMFI Cluster of Excellence (EXC-2124 — 390838134 project-ID 1-03.006_0) and the Collaborative Research Center CellMap (TRR 261 - 398967434). J.-K.W. acknowledges the US National Science Foundation (MCB-1818132), the US Department of Agriculture, and the Chan Zuckerberg Initiative. MZmine developers have received support from the European COST Action CA19105 — Pan-European Network in Lipidomics and EpiLipidomics (EpiLipidNET). We acknowledge the support of the Google Summer of Code (GSoC) program, which has funded the development of several MZmine modules through student projects. We thank Adam Tenderholt for introducing MZmine to the GSoC program.Peer reviewe
Nurses’ Perceptions of Error Communication and Reporting in the Intensive Care Unit
Objectives: To describe models of nursing communication about medical error. Methods: Intensive care unit nurses at 4 hospitals that had implemented evidence-based practices to reduce hospital-acquired infections participated in focus groups. They discussed medical error decision making regarding formal reporting, telling someone else about a mistake, or keeping silence. From transcripts, we identified categories and grouped thematic elements; we then triangulated focus group findings with results from a safety culture survey completed by a random sample of nurses from those same intensive care units. Using all sources of data, models of communication were developed. Results: Thirty-three nurses attended 8 focus groups, and 92 nurses completed the surveys. Focus group nurses remained conflicted about reporting error, using time pressure, and the presence or absence of actual patient harm to prioritize formal reporting. Nurse-reported feedback was rare following formal reports of error. In contrast, responses from the safety culture survey revealed socially desirable answers, with a majority of nurses reporting that they usually or always reported errors and received feedback. Nurses are strongly conflicted about disclosing their errors to peers and physicians. Nurses preferred reporting witnessed errors to their supervisor rather than confronting the peer and used complex maneuvering when communicating with physicians about physician error. Conclusions: Medical error distresses nurses who are conflicted about disclosing, discussing, and reporting it. Lack of feedback from administration regarding reported errors reinforces the sense that reporting is not useful. Recognizing the barriers to learning about safety from reporting and the need for visibility in communicating lessons from errors is essential as hospitals strive for safe patient care
Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme
Item does not contain fulltex
- …