563 research outputs found

    Optical Activities as Computing Resources for Space-time Symmetries

    Full text link
    It is known that optical activities can perform rotations. It is shown that the rotation, if modulated by attenuations, can perform symmetry operations of Wigner's little group which dictates the internal space-time symmetries of elementary particles.Comment: 13 pages, to be published in J. Mod. Optic

    Carrier recombination dynamics in InGaN/GaN multiple quantum wells

    Full text link
    We have mesured the carrier recombination dynamics in InGaN/GaN multiple quantum wells over an unprecedented range in intensity. We find that at times shorter than 30\,ns, they follow an exponential form, and a power law at times longer than 1\,μ\mus. To explain these biphasic dynamics, we propose a simple three-level model where a charge-separated state interplays with the radiative state through charge transfer following a tunneling mechanism. We show how the distribution of distances in charge-separated states controls the dynamics at long time. Our results imply that charge recombination happens on nearly-isolated clusters of localization centers.Comment: 11 pages, 3 figures, accepted for publication in PHYSICAL REVIEW

    Gain properties of dye-doped polymer thin films

    Full text link
    Hybrid pumping appears as a promising compromise in order to reach the much coveted goal of an electrically pumped organic laser. In such configuration the organic material is optically pumped by an electrically pumped inorganic device on chip. This engineering solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of the gain features of dye-doped polymer thin films. In particular we introduce the gain efficiency KK, in order to facilitate comparison between different materials and experimental conditions. The gain efficiency was measured with various setups (pump-probe amplification, variable stripe length method, laser thresholds) in order to study several factors which modify the actual gain of a layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM doped PMMA layer, the different experimental approaches give a consistent value KK\simeq 80 cm.MW1^{-1}. On the contrary, the usual model predicting the gain from the characteristics of the material leads to an overestimation by two orders of magnitude, which raises a serious problem in the design of actual devices. In this context, we demonstrate the feasibility to infer the gain efficiency from the laser threshold of well-calibrated devices. Besides, temporal measurements at the picosecond scale were carried out to support the analysis.Comment: 15 pages, 17 figure

    Fifth-order two-quantum absorptive two-dimensional electronic spectroscopy of CdSe quantum dots

    Get PDF
    Two-quantum variants of two-dimensional electronic spectroscopy (2DES) have previously been used to characterize multi-exciton interactions in molecules and semiconductor nanostructures though many implementations are limited by phasing procedures or non-resonant signals. We implement 2DES using phase-cycling to simultaneously measure one-quantum and two-quantum spectra in colloidal CdSe quantum dots. In the pump–probe geometry, fully absorptive spectra are automatically acquired by measuring the sum of the rephasing and nonrephasing signals. Fifth-order two-quantum spectroscopy allows for direct access to multi-exciton states that may be obscured in excited state absorption signals due to population relaxation or third-order two-quantum spectra due to the non-resonant response

    First-principles calculations for the adsorption of water molecules on the Cu(100) surface

    Full text link
    First-principles density-functional theory and supercell models are employed to calculate the adsorption of water molecules on the Cu(100) surface. In agreement with the experimental observations, the calculations show that a H2O molecule prefers to bond at a one-fold on-top (T1) surface site with a tilted geometry. At low temperatures, rotational diffusion of the molecular axis of the water molecules around the surface normal is predicted to occur at much higher rates than lateral diffusion of the molecules. In addition, the calculated binding energy of an adsorbed water molecule on the surfaces is significantly smaller than the water sublimation energy, indicating a tendency for the formation of water clusters on the Cu(100) surface.Comment: 5 pages, 3 figures, submitted to Phys. Rev.

    An insight into polarization states of solid-state organic lasers

    Full text link
    The polarization states of lasers are crucial issues both for practical applications and fundamental research. In general, they depend in a combined manner on the properties of the gain material and on the structure of the electromagnetic modes. In this paper, we address this issue in the case of solid-state organic lasers, a technology which enables to vary independently gain and mode properties. Different kinds of resonators are investigated: in-plane micro-resonators with Fabry-Perot, square, pentagon, stadium, disk, and kite shapes, and external vertical resonators. The degree of polarization P is measured in each case. It is shown that although TE modes prevail generally (P>0), kite-shaped micro-laser generates negative values for P, i.e. a flip of the dominant polarization which becomes mostly TM polarized. We at last investigated two degrees of freedom that are available to tailor the polarization of organic lasers, in addition to the pump polarization and the resonator geometry: upon using resonant energy transfer (RET) or upon pumping the laser dye to an higher excited state. We then demonstrate that significantly lower P factors can be obtained.Comment: 12 pages, 12 figure

    Nonclassical polarization states

    Full text link

    Assessing the Polarization of a Quantum Field from Stokes Fluctuation

    Get PDF
    We propose an operational degree of polarization in terms of the variance of the projected Stokes vector minimized over all the directions of the Poincar\'e sphere. We examine the properties of this degree and show that some problems associated with the standard definition are avoided. The new degree of polarization is experimentally determined using two examples: a bright squeezed state and a quadrature squeezed vacuum.Comment: 4 pages, 2 figures. Comments welcome

    Maximally polarized states for quantum light fields

    Get PDF
    The degree of polarization of a quantum state can be defined as its Hilbert-Schmidt distance to the set of unpolarized states. We demonstrate that the states optimizing this degree for a fixed average number of photons Nˉ\bar{N} present a fairly symmetric, parabolic photon statistics, with a variance scaling as Nˉ2\bar{N}^2. Although no standard optical process yields such a statistics, we show that, to an excellent approximation, a highly squeezed vacuum can be considered as maximally polarized.Comment: 4 pages, 3 eps-color figure
    corecore