258 research outputs found
Inductive Reasoning Games as Influenza Vaccination Models: Mean Field Analysis
We define and analyze an inductive reasoning game of voluntary yearly
vaccination in order to establish whether or not a population of individuals
acting in their own self-interest would be able to prevent influenza epidemics.
We find that epidemics are rarely prevented. We also find that severe epidemics
may occur without the introduction of pandemic strains. We further address the
situation where market incentives are introduced to help ameliorating
epidemics. Surprisingly, we find that vaccinating families exacerbates
epidemics. However, a public health program requesting prepayment of
vaccinations may significantly ameliorate influenza epidemics.Comment: 20 pages, 7 figure
Nanotransfer Printing of Organic and Carbon Nanotube Thin-Film Transistors on Plastic Substrates
A printing process for high-resolution transfer of all components for organic
electronic devices on plastic substrates has been developed and demonstrated
for pentacene (Pn), poly (3-hexylthiophene) and carbon nanotube (CNT) thin-film
transistors (TFTs). The nanotransfer printing process allows fabrication of an
entire device without exposing any component to incompatible processes and with
reduced need for special chemical preparation of transfer or device substrates.
Devices on plastic substrates include a Pn TFT with a saturation, field-effect
mobility of 0.09 cm^2 (Vs)^-1 and on/off ratio approximately 10^4 and a CNT TFT
which exhibits ambipolar behavior and no hysteresis.Comment: to appear in Applied Physics Letter
From regional pulse vaccination to global disease eradication: insights from a mathematical model of Poliomyelitis
Mass-vaccination campaigns are an important strategy in the global fight
against poliomyelitis and measles. The large-scale logistics required for these
mass immunisation campaigns magnifies the need for research into the
effectiveness and optimal deployment of pulse vaccination. In order to better
understand this control strategy, we propose a mathematical model accounting
for the disease dynamics in connected regions, incorporating seasonality,
environmental reservoirs and independent periodic pulse vaccination schedules
in each region. The effective reproduction number, , is defined and proved
to be a global threshold for persistence of the disease. Analytical and
numerical calculations show the importance of synchronising the pulse
vaccinations in connected regions and the timing of the pulses with respect to
the pathogen circulation seasonality. Our results indicate that it may be
crucial for mass-vaccination programs, such as national immunisation days, to
be synchronised across different regions. In addition, simulations show that a
migration imbalance can increase and alter how pulse vaccination should
be optimally distributed among the patches, similar to results found with
constant-rate vaccination. Furthermore, contrary to the case of constant-rate
vaccination, the fraction of environmental transmission affects the value of
when pulse vaccination is present.Comment: Added section 6.1, made other revisions, changed titl
Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees
The spread of infectious diseases crucially depends on the pattern of
contacts among individuals. Knowledge of these patterns is thus essential to
inform models and computational efforts. Few empirical studies are however
available that provide estimates of the number and duration of contacts among
social groups. Moreover, their space and time resolution are limited, so that
data is not explicit at the person-to-person level, and the dynamical aspect of
the contacts is disregarded. Here, we want to assess the role of data-driven
dynamic contact patterns among individuals, and in particular of their temporal
aspects, in shaping the spread of a simulated epidemic in the population.
We consider high resolution data of face-to-face interactions between the
attendees of a conference, obtained from the deployment of an infrastructure
based on Radio Frequency Identification (RFID) devices that assess mutual
face-to-face proximity. The spread of epidemics along these interactions is
simulated through an SEIR model, using both the dynamical network of contacts
defined by the collected data, and two aggregated versions of such network, in
order to assess the role of the data temporal aspects.
We show that, on the timescales considered, an aggregated network taking into
account the daily duration of contacts is a good approximation to the full
resolution network, whereas a homogeneous representation which retains only the
topology of the contact network fails in reproducing the size of the epidemic.
These results have important implications in understanding the level of
detail needed to correctly inform computational models for the study and
management of real epidemics
The Impact of the Unstructured Contacts Component in Influenza Pandemic Modeling
Individual based models have become a valuable tool for modeling the spatiotemporal dynamics of epidemics, e.g. influenza pandemic, and for evaluating the effectiveness of intervention strategies. While specific contacts among individuals into diverse environments (family, school/workplace) can be modeled in a standard way by employing available socio-demographic data, all the other (unstructured) contacts can be dealt with by adopting very different approaches. This can be achieved for instance by employing distance-based models or by choosing unstructured contacts in the local communities or by employing commuting data.Here we show how diverse choices can lead to different model outputs and thus to a different evaluation of the effectiveness of the containment/mitigation strategies. Sensitivity analysis has been conducted for different values of the first generation index G(0), which is the average number of secondary infections generated by the first infectious individual in a completely susceptible population and by varying the seeding municipality. Among the different considered models, attack rate ranges from 19.1% to 25.7% for G(0) = 1.1, from 47.8% to 50.7% for G(0) = 1.4 and from 62.4% to 67.8% for G(0) = 1.7. Differences of about 15 to 20 days in the peak day have been observed. As regards spatial diffusion, a difference of about 100 days to cover 200 km for different values of G(0) has been observed.To reduce uncertainty in the models it is thus important to employ data, which start being available, on contacts on neglected but important activities (leisure time, sport mall, restaurants, etc.) and time-use data for improving the characterization of the unstructured contacts. Moreover, all the possible effects of different assumptions should be considered for taking public health decisions: not only sensitivity analysis to various model parameters should be performed, but intervention options should be based on the analysis and comparison of different modeling choices
Rapid Emergence of Free-Riding Behavior in New Pediatric Immunization Programs
BACKGROUND: Mathematical models have formalized how free-rider effects can threaten the stability of high vaccine coverage levels under established voluntary vaccination programs. However, little research has addressed the question of when free-riding begins to develop when a new vaccine is first introduced in a population. METHODOLOGY/PRINCIPAL FINDINGS: Here, we combine a game theoretical model of vaccinating behavior with an age-structured compartmental model to analyze rational vaccinating behavior in the first years of a universal immunization program, where a new vaccine is free to all children of a specified age. The model captures how successive birth cohorts face different epidemiological landscapes that have been shaped by the vaccinating decisions of previous birth cohorts, resulting in a strategic interaction between individuals in different birth cohorts. The model predicts a Nash equilibrium coverage level of for the first few birth cohorts under the new program. However, free-riding behavior emerges very quickly, with the Nash equilibrium vaccine coverage dropping significantly within 2-5 years after program initiation. Subsequently, a rich set of coupled dynamics between infection prevalence and vaccinating behaviors is possible, ranging from relatively stable (but reduced) coverage in later birth cohorts to wide fluctuations in vaccine coverage from one birth cohort to the next. Individual tolerance for vaccine risk also starts out at relatively high levels before dropping significantly within a few years. CONCLUSIONS/SIGNIFICANCE: These results suggest that even relatively new immunization programs can be vulnerable to drops in vaccine coverage caused by vaccine scares and exacerbated by herd immunity effects, necessitating vigilance from the start
Basin boundary, edge of chaos, and edge state in a two-dimensional model
In shear flows like pipe flow and plane Couette flow there is an extended
range of parameters where linearly stable laminar flow coexists with a
transient turbulent dynamics. When increasing the amplitude of a perturbation
on top of the laminar flow, one notes a a qualitative change in its lifetime,
from smoothly varying and short one on the laminar side to sensitively
dependent on initial conditions and long on the turbulent side. The point of
transition defines a point on the edge of chaos. Since it is defined via the
lifetimes, the edge of chaos can also be used in situations when the turbulence
is not persistent. It then generalises the concept of basin boundaries, which
separate two coexisting attractors, to cases where the dynamics on one side
shows transient chaos and almost all trajectories eventually end up on the
other side. In this paper we analyse a two-dimensional map which captures many
of the features identified in laboratory experiments and direct numerical
simulations of hydrodynamic flows. The analysis of the map shows that different
dynamical situations in the edge of chaos can be combined with different
dynamical situations in the turbulent region. Consequently, the model can be
used to develop and test further characterisations that are also applicable to
realistic flows.Comment: 24 pages, 9 color figure
- …