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Abstract Five-dimensional (5D) space-time symmetry
greatly facilitates how a 4D observer perceives the propa-
gation of a single spinless particle in a 5D space-time. In
particular, if the 5D geometry is independent of the fifth
coordinate then the 5D physics may be interpreted as 4D
quantum mechanics. In this work we address the case where
the symmetry is approximate, focusing on the case where
the 5D geometry depends weakly on the fifth coordinate. We
show that concepts developed for the case of exact symme-
try approximately hold when other concepts such as decay-
ing quantum states, resonant quantum scattering, and Stokes
drag are adopted, as well. We briefly comment on the opti-
cal model of the nuclear interactions and Millikan’s oil drop
experiment.

1 Introduction

Geodesic propagation in five-dimensional (5D) space-times
has remained, lately, a topic of great interest [1–8]. Particular
attention has been devoted to 5D space-times, with a space-
like fifth dimension which is neither compact nor Planckian,
where the metric is independent of the fifth dimension [7–10].
It has been shown that, in this case, 5D null-path propagation
may be interpreted as anomaly-free 4D propagation both in
the classical and quantum regimes [7,8,11,12].

Why do we need thus a 5D formulation of physics? The
approach to answer this question has been three fold.

First, studies of field equations (e.g., see [8–10]) and
geodesic motion [6,8] claimed that the existence of extra
dimensions manifests as new physics in ordinary 4D space-
time. The relationship between geodesic motion and the clas-
sical tests of general relativity adapted for 5D space-times
may be found in Ref. [8]. Furthermore, it has been postu-
lated that phase experiments may carry a signature of the 5D
nature of space-time [13].
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Second, it has been proposed that 5D space-time offers
a unifying anthropic principle, since, inherently, we are 4D
perceivers of Nature. In particular, it has been postulated that
5D symmetric space-times provide physical pictures depend-
ing on the symmetry [11,12]. Hence, if the 5D geometry
is independent of the fifth coordinate then the 5D physics
can be perceived as 4D quantum mechanics, while if the 5D
geometry is independent of time then the 5D physics can be
perceived as 4D statistical mechanics.

Third, studies began to address general 5D space-time
geometries. A discussion of geodesic motion in non-sym-
metric 5D space-times is found in Ref. [6]. In this work we
follow the same line of thought and address the case where
symmetry is approximate. We postulate how concepts devel-
oped for the case where the symmetry is exact are used for the
case where the symmetry is approximate. Of course, these
concepts will work for a small region where the 5D space-
time appears to be symmetric. However, we show that they
can be extended over larger regions if additional concepts
such as decaying quantum states, resonant quantum scatter-
ing, and Stokes drag are adopted, as well. The price to pay for
all these concepts working together is that general covariance
no longer holds. We focus on the case where the 5D geometry
depends weakly on the fifth coordinate. The case where the
5D geometry depends weakly on time leads to the statistical
physics of time-dependent systems, near thermodynamical
equilibrium. We defer this to further work.

The structure of the paper is as follows. In Sect. 2 we
introduce our space-time geometry. In Sect. 3 we discuss
quantum propagation using 5D null-path integrals. In Sect. 4
we discuss geodesic motion and then we conclude our work.

2 Five-dimensional space-time

We consider a 5D space-time with the metric hAB (A, B, . . .

= 0, 1, 2, 3, 5) containing one particle, and postulate that all
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quantum propagation of the particle takes place on 5D null
paths [11]. A complete description of the propagation in the
5D space-time requires measurements of additional entities
to 4D space-time events.

We discuss a special class of 5D space-times, foliated into
conformally flat 4D space-times. The conformal factor is
chosen to be the inverse square lapse of the foliation. The
shift of the foliation, Nμ ≡ q Aμ/c2 (μ, ν, . . . = 0, 1, 2, 3),
remnant of the 5D gravitational field, is interpreted as an
external electromagnetic field by the 4D observer. The sym-
bol q stands for the specific charge of the particle—we use
c.g.s. units throughout. In this context, q/c2 represents a con-
version constant between the gravitational and the electro-
magnetic field. The 5D field equations imply that Aμ (i.e.,
Nμ) satisfy Maxwell-type equations [8–10].

We thus obtain a flat 4D space-time with superimposed
electromagnetic field, fit for describing many experimental
setups. We think of these space-times as local approximations
of more realistic geometric constructs including non-trivial
gravitational fields, whose metrics satisfy suitable field equa-
tions [8,11]. Removing the conformal factor from the metric
since it is irrelevant for null-path counting, we have

h̃ AB =
(

ημν + q2

c4 AμAν
q
c2 Aμ

q
c2 Aν 1

)
,

h̃ AB =
(

ημν − q
c2 A

μ

− q
c2 A

ν 1 + q2

c4 A
ρ Aρ

)
, (1)

where the indices μ, ν, . . . are raised with ημν .

3 Path integrals

Consider any two causally ordered events 1 and 2, with 1 in
the past of 2, which we write as 1 ≺ 2. Denote the coor-
dinates of 1 and 2 by x A

(1) and x A
(2), respectively. Then the

sum over 5D null paths between 1 and 2, denoted here by
R(x A

(1), x
A
(2)), is positively defined, is conformally invariant,

and has the status of a microcanonical sum, determining the
particle propagation between 1 and 2 [11]. The resulting 4D
space-time is non-Lorentzian. The 5D infinitesimal null-path
element ds5 ≡

√
h̃ ABdx Adx B = 0 can be rewritten as

ds4 ± ≡ dx5 = ±√−ημνdxμdxν − q

c2 Aρdxρ. (2)

If Aρ is independent of x5, then we obtain a 4D quantum
mechanical picture [11]. ds4 ± can be regarded as a 4D met-
ric in a 4D non-Lorentzian curved manifold, where the dis-
tance is ds4 ± if 1 ≺ 2, and −ds4 ± if 2 ≺ 1. Computing
the path integral R(x A

(1), x
A
(2)) in the 5D Lorentzian manifold

with the metric h̃ AB is equivalent to computing the following
Feynman path integral [11]:

�±(λ−1; xμ

(1), x
μ

(2)) =
∫

[d4x]eiλ−1s4 ±(1≺2) (3)

of paths between xμ

(1) and xμ

(2), the 4D projections of x A
(1)

and x A
(2), respectively, in a non-Lorentzian manifold. The

symbol λ represents the Compton wavelength of the prop-
agating particle; i.e., λ ≡ h̄/(mc). It follows that comput-
ing the path integral R(x A

(2), x
A
(1)) is equivalent to computing

�∗±(λ−1; xμ

(1), x
μ

(2)). �± does not result as a scalar field on
the 4D manifold, since a transformation of coordinates that
reverses causality implies a complex conjugation of �±.

If Aρ is not independent of x5, then the traditional quan-
tum mechanics picture no longer holds. The mass of the par-
ticle is no longer a constant of motion. We discuss a possible
interpretation of the case where we have weak electromag-
netic fields of the form Aρ + x5A′

ρ with ∂5Aρ = 0 and
∂5A′

ρ = 0. We obtain

dx5 = ±√−ημνdxμdxν − q

c2 Aρdxρ − q

c2 x
5A′

ρdxρ. (4)

Hence, it is not possible to naturally define a 4D path element.
In fact, by separating the fifth coordinate and integrating, we
obtain a non-local action,

s′
4 ±(1 ≺ 2) ≡ x5

(2) − x5
(1)

=
∫

1≺3≺2

(
±√−ημνdxμdxν − q

c2 Aρdxρ
)

× exp

⎛
⎝ ∫

3≺2

dxρ q

c2 A
′
ρ

⎞
⎠ , (5)

whose path integral

� ′±(λ−1; xμ

(1), x
μ

(2)) =
∫

1≺2

[d4x]eiλ−1s′4 ±(1≺2) (6)

satisfies, in the non-relativistic limit, the following differ-
ential equation obtained according to Feynman’s procedure
[14]:

± h̄

i

∂� ′±
∂t

= 1

2m

[
h̄

i
∇ − mq

c

−→
A

]2

� ′± ∓ mqA0�
′± + mc2� ′±

+ h̄

i

(
− c

2

q

c2 A
′
0 ± q

2mc2

−→
A′ h̄

i
∇ ± c

2

q

c2

−→
A

q

c2

−→
A′

)
� ′±.

(7)

� ′− describes the forward propagation of a particle of massm,
while� ′+ describes the forward propagation of an antiparticle
of mass m. Since the electromagnetic field depends on x5,
the mass is, in fact, no longer a constant of motion. However,
the propagation is considered for a 4D particle of mass m,
where terms in A′

ρ account for the change in the dynamics
due to the change in mass.
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The term in round brackets is non-hermitian and problem-
atic for an interpretation of quantum mechanics where proba-
bility is conserved. Still, non-hermitian hamiltonians are used
to describe key processes such as decaying quantum states
[15] and resonant quantum scattering [16]. In particular, we
emphasize the success of the phenomenological model of
nuclear interactions in the range of 10–100 MeV known as
the optical model [17]. Summation over paths in space-times
with complex coordinates, involving actions with complex
potential, proved successful in further developing some of
these theories [18]. Later, it was shown that paths in mani-
folds with real coordinates suffice [19]. Our approach uses
both real interaction potentials and paths in manifolds with
real coordinates.

4 Geodesic propagation

We discuss the classical limit where λ → 0 and the propa-
gation takes place on a single path where the action reaches
a local extremum and which contributes most to the path
integral. We denote by τ the parameter of a path and,
using Eq. (5), write the lagrangian of the non-local action
s′

4 ±(1 ≺ 2), with 1 ≺ 3 ≺ 2, as follows:

L ≡ L + L ′
∫

1≺4≺3

dτ L exp

⎛
⎝ ∫

4≺3

L ′dσ

⎞
⎠ , (8)

where
L = ±√−ημν ẋμ ẋν − q

c2 Aρ ẋ
ρ, L ′ = − q

c2 A
′
ρ ẋ

ρ, (9)

and ẋμ ≡ dxμ/dτ . Assuming that on the classical path∣∣∣∣∣∣
∫

1≺2

L ′dσ

∣∣∣∣∣∣ 	 1, (10)

we have1

L ≈ L + L ′
∫

1≺3

dτ L , (11)

and the Euler–Lagrange equations are[
d

dτ

(
∂L

∂ ẋμ

)
− ∂L

∂xμ

]

+
[

d

dτ

(
∂L ′

∂ ẋμ

) ∫ τ

τ1

Ldσ + dL ′

dτ

∫ τ

τ1

∂L

∂xμ
dσ − ∂L ′

∂xμ

×
∫ τ

τ1

Ldσ − L ′
∫ τ

τ1

∂L

∂xμ
dσ + ∂L ′

∂ ẋμ
L + L ′ ∂L

∂ ẋμ

]
= 0.

(12)

1 An alternate way to arrive at Eq. (11) is as follows. Equation (4),
providing the infinitesimal action dx5 as a function of x5, may be read
as an equation for an attracting fixed point at x5. Hence, for the first
order in L ′, we perform one iteration toward the fixed point. That is, we
choose x5

(1) = 0 and use ds4 ±(1 ≺ 3) for a nested approximation of
ds′

4 ±(1 ≺ 2).

4.1 A non-relativistic application

To illustrate the 4D interpretation of 5D geodesic motion, we
consider Eq. (12) under the following conditions. First, we
assume a simple form of the electromagnetic potential,

Aρ + x5A′
ρ = (−zE, 0, 0, 0) + x5(A′

0, 0, 0, 0), (13)

where E and A′
0 are constants. Second, the path parameter

τ represents the proper time of the time-like geodesic in the
4D manifold with the metric ημν ; i.e., dτ 2 = −ημνdxμdxν .
Third, we take the non-relativistic limit where τ → ct and
|dẋ jdẋ j/c2| 	 1. Fourth, we multiply Eq. (12) by mc.2

Hence, we obtain

mz̈ − mq

c
A′

0 ż ± (mq)E
[
1 − q

c
A′

0(t2 − t1)
]

= 0, (14)

where we further neglect the term |(q/c)A′
0(t2 − t1)| =

| ∫ t2
t1

L ′dt | 	 1 [cf. Eq. (10)], meaning that the equation of
motion holds for short time intervals (t2 − t1) 	 |c/(q A′

0)|.
Hence, we arrive at

mz̈ − mq

c
A′

0 ż ± (mq)E = 0. (15)

This corresponds to the 5D picture whereby a particle with
momentum pA = (E/c,−→p ,mc) propagates with increas-
ing mass, until eventually reaching the momentum p̂A =
(E/c, 0, m̂c), at rest. Equation (15) stands for the motion of
a 4D particle in constant electric field, subject to a drag of
Stokes type. In the case where (mq)A′

0/c < 0, the 4D par-
ticle with speed ż brakes because of the interaction with a
still environment. The case where (mq)A′

0/c > 0 is reduced
to the previous case by a time reversal transformation. How-
ever, an interpretation by which the 4D particle is entrained
by a moving environment is also possible.

The 5D setup with the electromagnetic potential given
by Eq. (13) has yet another interpretation [11]. Since Aρ +
x5A′

ρ is time independent and motion is non-relativistic, the
particle propagation may be described, as leading order, by
the Langevin equation [11]

mz̈ + ζ ż ± (mq)E + η(t) = 0, (16)

where ζ is the drag coefficient and η(t) is a stochastic force
with 〈η(t)η(t ′)〉 = 2ζkBT δ(t − t ′). In the limit where ther-
mal fluctuations go to zero (i.e., T → 0), the stochastic
force vanishes. Hence, cf., Eqs. (15) and (16), we identify

2 Because the translational symmetry along x5 holds only approxi-
mately, λ changes slowly with the proper time. We consider λ as an
approximate constant of motion. As a precaution for the physical inter-
pretation, we use λ−1s′

4 ± rather than s′
4 ± as physical action.
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−(mq)A′
0/c with ζ . Furthermore, we rewrite the condition

|(q/c)A′
0(t2 − t1)| = | ∫ t2

t1
L ′dt | 	 1 as 2(t2 − t1)/u 	 1,

where u ≡ 2m/ζ is a quantum of physical time [11], defined
for the case where E = 0.

Particle motion described by Eqs. (15) and (16) was stud-
ied experimentally by Brown [20] and Millikan [21,22]. In
particular, Millikan studied the motion on charged oil drops
in constant electric field. By tuning E , while keeping every-
thing else unchanged, one could in principle measure mq.
However, to estimatemq, Millikan observed oil drops whose
charge changed suddenly during the experiment, due to ion-
ization. Hence, according to our theory, this corresponds to
several single particle propagations. Explaining the experi-
mental results obtained by Millikan requires additional phys-
ical principles to those described here.

5 Discussion and conclusion

Kaluza’s ansatz to set up ∂5 to zero leads to a unified formu-
lation of field equation for the gravitational and electromag-
netic fields [23]. However, even in the case where the metric
is x5-dependent, one may absorb the terms which contain ∂5

into sources of the electromagnetic field. Hence, formally, a
split of the 5D field equations between equations for the grav-
itational and the electromagnetic fields is possible even in the
absence of the space-like symmetry. Therefore, we conclude
that Maxwell-type equations, in agreement with experimen-
tal observations of electric fields, may be written even though
the 5D space-time is not symmetric.

In previous work, we discussed an interpretation of a sym-
metric 5D space-time and introduced physical concepts such
as mass and temperature to 4D geometry. In the case where
the 5D space-time is approximatively symmetric, these con-
cepts hold approximatively, in a small region of space-time.
The description of the 5D geometry may be improved by
using additional concepts such as decaying states, resonant
quantum scattering, and Stokes drag. These concepts cor-
rect the previously proposed 4D picture [11] and extend
the description of particle propagation for longer durations
of proper time. Furthermore, we link newly obtained equa-
tions of motion to previously studied phenomenology. Hence,
building on previous work, more and more 4D physics may
be regarded from the perspective of a non-compact 5D space-
time.
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