17 research outputs found

    QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny

    Get PDF
    Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross "Contender" (C, resistant) 7 "Elegant Lady" (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C 7 EL population and to construct a linkage map. C 7 EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9 cM, covering 78.73 % of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C 7 EL-2, R2 = 13.1-31.5 %) and EPPISF032 (LG C 7 EL-4, R2 = 11-14 %) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R2 = 3.0-11.0 %). These results suggest that in the C 7 EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit

    Vibrational structure and vibronic coupling in the carbon 1s photoelectron spectra of benzene and deuterobenzene

    No full text
    Vibrationally resolved C1s photoelectron spectra of benzene and d(6)-benzene have been recorded using monochromated synchrotron radiation at photon energies of 330 eV. The spectrum of normal benzene displays considerable vibrational structure. Particularly noteworthy is the strong excitation of a combined CCH-bending and CC-stretching mode which splits the main peak into two well-defined maxima. In d(6)-benzene, the vibrational energy levels are less well separated and the vibrational structure is reduced to strong asymmetry of the main peak and a broad tail extending toward higher ionization energy. The recorded spectra are analyzed using first-principle and curve-fitting procedures. A theoretical model that allows for incomplete localization of the core hole, results in very good fits to the experimental spectra of both benzene and d(6)-benzene

    Valence photoionization and photoelectron-photoion coincidence (PEPICO) study of molecular LiCl and Li2Cl2

    No full text
    Molecular LiCl and Li2Cl2 have been studied in the vapor phase with valence photoelectron and photoelectron-photoion coincidence spectroscopies. These two techniques determine the binding energies in fundamentally different ways. Binding energies obtained from photoelectron spectra are usually taken as the vertical ionization energies of the corresponding electronic states. In cases with several overlapping bands, corresponding to different electronic states, the coincidence measurement can separate the bands if the respective final states fragment differently. This applies well to the monomer case. To facilitate the determination of state-specific ionization energies in the dimeric molecule, a theoretical Franck-Condon analysis has been carried out. Moreover, ab initio coupled-cluster and density-functional-theory calculations have been used to analyze the fragmentation pattern based on asymptotic dissociation energies. The fragmentation pattern is largely common to all the accessible valence-ionized states of the chiller, consistent with rapid conversion to the ionic ground state before fragmentation. However, the highest-lying state of Li2Cl2+, (2)A(g). shows enhanced propensity for Li+ as dissociation product. (C) 2012 Elsevier B.V. All rights reserved

    Two size regimes of methanol clusters produced by adiabatic expansion

    No full text
    Free neutral methanol clusters produced by adiabatic expansion have been studied by photoelectron spectroscopy and line shape modeling. The results show that clusters belonging to two distinct size regimes can be produced by changing the expansion conditions. While the larger size regime can be well described by line shapes calculated for clusters consisting of hundreds of molecules, the smaller size regime corresponds to methanol oligomers, predominantly of cyclic structure. There is little contribution from dimers to the spectra

    High resolution C1s and S2p photoelectron spectra of tiophene

    No full text
    Vibrationally resolved C1s and S2p photoelectron spectra of the thiophene molecule have been recorded using monochromated synchrotron radiation at photon energies of 330 eV and 210 eV, respectively. The photoelectron bands contain complex vibrational structures which are analyzed using ab initio and curve-fitting procedures. The analysis is in good agreement with the experimental spectrum which enables identification of two chemically shifted carbon 1s core hole states. We were also able to determine the molecular-field splitting of the S2p3/2 ionic state to about 99 meV. The molecular-field splitting was moreover calculated using second-order Møller–Plesset perturbation theory, confirming the result from the fitting procedure

    Harmonic Balance Methodology for Meshless Particle-Based Methods

    No full text
    corecore